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Abstract

This study analyzes the identification and estimation of causal effects in situations where
units interact and treatment is endogenous due to imperfect compliance. In cases where
units do not interact, monotonicity in potential treatments identifies local average treat-
ment effects (LATE). When units interact, monotonicity can still apply, but additional
restrictions on potential treatments, such as one-sided noncompliance or personalized
encouragement, are typically required. This paper generalizes these restrictions into
a weaker concept of monotonicity and provides a unified framework for this context.
Direct and indirect LATEs are identified under strictly weaker restrictions on potential
treatments compared to existing approaches, but with the assumption of an additional
exclusion restriction for the endogenous treatment. A parametric estimator for causal
effects is introduced, and its performance is evaluated through simulations. The estima-
tor also assesses biases in existing methods when various underlying assumptions are
violated. The estimation procedure is illustrated using an experimental study in Kenya,
which provided access to a savings account.
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1 Introduction

The causal effects of a program are of great interest in various economic studies, and the
potential outcome framework is a popular approach for analyzing these effects (e.g., Rubin
(1974), Rubin (2005)). Traditionally, it is assumed that experimental units do not interact,
meaning their potential outcomes are not influenced by other units’ treatments. This assump-
tion is known as the Stable Unit Treatment Value Assumption (SUTVA). Under this assump-
tion, the causal effect is typically defined as the difference between potential outcomes in two
distinct scenarios: when the unit is treated and when it is not. However, since only one of
these scenarios is observable, the other remains counterfactual. This introduces the funda-
mental problem in identifying causal effects. A common assumption to address this problem
is the ‘ignorability’ of the treatment, which means that the treatment is exogenously assigned.
Consequently, the distribution of observed outcomes in treated and untreated groups can be
used to recover the potential outcome distribution.

However, these assumptions are restrictive in many situations. First, as economic agents
naturally interact with each other, SUTVA can be violated. This phenomenon is referred to
as treatment interference. For instance, the treatments of other units can also have a causal
effect due to the reflection problem (e.g., Manski (1993)) or general equilibrium effects (e.g.,
Heckman, Lochner, and Taber (1999), Munro, Wager, and Xu (2021)). Second, even if the
treatment is fully randomized, the ignorability assumption can be violated if units do not
perfectly comply with their assigned treatment. In other words, the distribution of treatment
effects might vary according to different (non)compliance patterns.

This paper addresses the identification and estimation of treatment effects in the presence
of interference and imperfect compliance. To begin with, consider a scenario where units
interact. Each unit’s potential outcome is written as a function of the all units’ treatment.
Differences between potential outcomes under different treatment statuses of others define
indirect, or spillover, effects. However, analyzing such spillover effects is challenging due
to the numerous counterfactual potential scenarios. For example, while there are only two
potential outcomes when units do not interact, now there are 2𝑁 potential outcomes for each
unit when 𝑁 units interact.

The conventional approach in the literature assumes that the treatment vector affects the
potential outcome through a known function, which is often called exposure map or effective
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treatment in the literature (e.g., Manski (2013)). For instance, Leung (2020) shows that if in-
terference occurs through an anonymous network and only within neighborhoods in distance
1, then only the unit’s treatment and the number of treated and untreated neighbors determine
the potential outcome. Studies in this literature measure spillover effects as the effects from
changes in the exposure level (e.g., Aronow and Samii (2017), Leung (2020), Forastiere,
Airoldi, and Mealli (2021), Cai, Janvry, and Sadoulet (2015), Vazquez-Bare (2023b)). How-
ever, assuming researchers know a correctly specified exposure map is quite restrictive, and
some discuss the potential misspecification of the exposure map (e.g., Sävje, Aronow, and
Hudgens (2021), Leung (2022)).

On the other hand, if interference is not anonymous, it is difficult to expect a simple
exposure map to exist. In such cases, only interactions among a small number of units can
be analyzed to avoid the high dimensionality of potential scenarios, and some studies have
focused on interactions between pairs of units (e.g., Vazquez-Bare (2023a), Kormos, Lieli,
and Huber (2023)). The baseline scenario in this paper also considers interactions between
two non-anonymous units.

Next, imperfect compliance introduces various (non)compliance patterns, and under-
standing these patterns is essential to defining and identifying causal effects. Without in-
terference, we can define two potential treatment take-ups as 𝐷 (1) and 𝐷 (0), for treated and
untreated units, respectively. Then, each unit can be classified into 4 categories: always-

taker (𝐷 (1) = 𝐷 (0) = 1), never-taker (𝐷 (1) = 𝐷 (0) = 0), complier (𝐷 (1) > 𝐷 (0)), and de-

fier (𝐷 (1) < 𝐷 (0)). Notably, since always-takers and never-takers do not alter their treatment
take-up in response to different treatment assignments, only the effects from compliers or de-
fiers are identifable. One key strategy for identification is to exclude defiers, thereby focusing
on the causal effects of compliers. The resulting causal effect is the Local Average Treatment
Effect (LATE) on compliers (e.g., Imbens and Angrist (1994), Imbens and Rubin (1997), Im-
bens and Rubin (2010)). The exclusion of defiers is equivalently stated by the monotonicity
assumption: 𝐷 (1) ≥ 𝐷 (0). I refer to this as classical monotonicity in this paper.

In more general scenarios where units interact and do not perfectly comply, an additional
layer of interference must be considered: the interference in treatment take-up decisions.
That is, the potential treatment is now influenced by the other’s treatment assignments. This
situation is depicted in panel (a) of Figure 1. Consider the case of two units, and let 𝐷𝑖 (𝑧𝑖, 𝑧 𝑗 )
be binary potential treatment take-up for unit 𝑖 ∈ {1,2}, where (𝑧𝑖, 𝑧 𝑗 ) ∈ {0,1}2 be two units’
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treatment assignments. Then, for each unit, there are 4 potential treatments, resulting in
16 (24) possible compliance patterns and a total of 256 (28) possible joint compliance con-
figurations of two units, as noted by Kormos, Lieli, and Huber (2023). This complexity is
significantly greater than the four compliance types in the classical case. Therefore, to define
and identify meaningful causal effects, some or many compliance types need to be excluded,
as in the strategy used in classical cases.

Figure 1: Interactions in Treatment Take-Up Decisions

𝑍1 𝐷1

𝑍2 𝐷2

(a) General Case

𝑍1 𝐷1

𝑍2 𝐷2

(b) Personalized Encouragement

As compliance types are determined by potential treatments, studies in this literature
have employed various restrictions on potential treatments to reduce complexity. Some stud-
ies assume no interaction in the treatment take-up decision (i.e,. 𝐷𝑖 (𝑧𝑖,1) = 𝐷𝑖 (𝑧𝑖,0)) as
depicted in panel (b) of Figure 1. This is called personalized encouragement, and the clas-
sical monotonicity can be applied together with it (e.g., Kang and Imbens (2016), DiTraglia
et al. (2023), Sánchez-Becerra (2021), Blackwell (2017)). When allowing interference in
treatment take-up decisions, a number of studies assume one-sided nomcompliance (e.g.,
Vazquez-Bare (2023a), DiTraglia et al. (2023), Sánchez-Becerra (2021)), which means only
treated units have the opportunity to take the treatment or not (i.e., 𝐷𝑖 (0,0) = 𝐷𝑖 (0,1) = 0).
Studies also assume an extended version of monotonicity. Recall that classical monotonicity
imposes an ordering on the set {𝐷 (1), 𝐷 (0)}. The natural generalization of this concept is
imposing some ordering on the set of all potential treatments. For instance, in the two-units
case, Vazquez-Bare (2023a) imposes a total ordering on the set of all potential treatments as
𝐷𝑖 (1,1) ≥ 𝐷𝑖 (1,0) ≥ 𝐷𝑖 (0,1) ≥ 𝐷𝑖 (0,0). I refer to this as total monotonicity in this paper. A
less restrictive concept of monotonicity assumes a partial ordering on potential treatments as
𝐷𝑖 (1, 𝑧) ≥ 𝐷𝑖 (0, 𝑧), for all 𝑧, which I call marginal monotonicity (e.g., Vazquez-Bare (2023a),
Imai, Jiang, and Malani (2021), Hoshino and Yanagi (2023), Ohnishi and Sabbaghi (2024)).

The aforementioned restrictions effectively exclude certain compliance types. For exam-
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ple, in the case of two units, there are only 5 possible marginal compliance types under total
monotonicity, which further reduces to 3 when combined with one-sided noncompliance, as
shown by Vazquez-Bare (2023a). However, while classical monotonicity is interpreted as
excluding defiers, total and marginal monotonicity might be difficult to interpret. Overall,
these restrictions are not only challenging to verify, as they impose restrictions on potential
treatments that are not always observable, but they can also be difficult to justify in certain
situations because they impose many almost-sure inequalities on potential treatments. For
example, when the probabilities of both events 𝐷 (1,1) ≥ 𝐷 (0,1) and 𝐷 (1,1) < 𝐷 (0,1) are
0.5, total/marginal monotonicity fails.

This paper analyzes the identification of causal effects by significantly relaxing and gener-
alizing the assumptions on potential treatments. The main idea is to transform the aforemen-
tioned assumptions into a weaker concept of monotonicity. The essence of these assumptions
is imposing an almost-sure ordering on potential treatments. Therefore, I consider a mini-
mal partial ordering on the set of potential treatments. For example, it may only assume that
𝐷𝑖 (0,1) ≥ 𝐷𝑖 (0,0) with probability 1, leaving distributions of 𝐷𝑖 (1,1) and 𝐷𝑖 (1,0) unre-
stricted.

The parameters of interest in this paper are the local average direct and indirect effects. I
propose a general identification method for these parameters using the aforementioned weak
monotonicity assumption. Initially, I demonstrate that the intention-to-treat (ITT) effects on
outcomes can be represented as a linear combination of the parameters of interest. The causal
parameters are then recovered by the coefficients of the ITT equation, provided there is an
additional exclusion restriction that shifts the distribution of compliance types. I discuss sev-
eral notable special cases of the general results, including identification under personalized
encouragement, one-sided noncompliance, total/marginal monotonicity, and scenarios where
none of these assumptions are fully satisfied. Additionally, I propose a parametric estimation
procedure for these parameters, evaluate its performance using Monte Carlo simulations, and
illustrate it with experimental data from studies conducted by Dupas, Keats, and Robinson
(2017) and Dupas, Keats, and Robinson (2019).

This paper relates to the wide literature on estimating causal effects with interference. The
mainstream approach to deal with interference involves designing experiments with two-stage
randomization, as proposed by Hudgens and Halloran (2008). Two-stage randomization first
randomly assigns the treatment rate at the group level and then assigns treatment within each
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group according to the assigned rate. Recent studies address imperfect compliance under
this two-stage randomization (e.g., Kang and Imbens (2016), Blackwell (2017), DiTraglia
et al. (2023), Sánchez-Becerra (2021), Imai, Jiang, and Malani (2021), Hoshino and Yanagi
(2023)).

In contrast, some studies do not require two-stage randomization and are applicable to
standard randomized experiments with perfect compliance (e.g., Leung (2020), Vazquez-
Bare (2023b)) as well as those with imperfect compliance (e.g., Vazquez-Bare (2023a), Kor-
mos, Lieli, and Huber (2023)). This paper aligns with this latter strand of literature and does
not require two-stage randomization.

This paper primarily focuses on the interaction between two units. While social interac-
tions generally involve multiple or many units, interactions between two units represent the
most fundamental structure for understanding key features of social interactions. Addition-
ally, a small number of units allows for analyzing non-anonymous networks. This setting
is also applicable to various examples, including dating relationships (e.g., Milardo, John-
son, and Huston (1983)), married couples (e.g., Foos and De Rooij (2017), Vazquez-Bare
(2023a)), pairs of adolescents in their social cognition (e.g., Hermans et al. (2020)), pairs
trading in finance1 (e.g., Elliott, Van Der Hoek, and Malcolm (2005), Gatev, Goetzmann, and
Rouwenhorst (2006), Vidyamurthy (2004)).

Therefore, this paper is most closely related to the works of Vazquez-Bare (2023a) and
Kormos, Lieli, and Huber (2023) where the main discussion focuses on the interaction be-
tween two units. Vazquez-Bare (2023a) assumes total monotonicity and one-sided noncom-
pliance, while Kormos, Lieli, and Huber (2023) assumes only one-sided noncompliance to
identify direct and indirect LATEs. In this paper, I relax both the total monotonicity and
one-sided noncompliance assumptions. The cost of this generalization is the need for an
additional exclusion restriction for the compliance types. These studies are also comple-
mentary in that Vazquez-Bare (2023a) extends the model to the general 𝑁 units case, and
Kormos, Lieli, and Huber (2023) explicitly considers two treatments, adding an extra layer
of heterogeneity. I provide a comparison of the proposed estimation in this paper and those
from Vazquez-Bare (2023a) by assessing bias when one-sided noncompliance or total mono-
tonicity is violated via simulation.

1An advanced trading strategy that involves opening one long position and one short position for two finan-
cial securities.
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In summary, this paper makes two key contributions. First, it proposes a unified frame-
work for causal effects under interference and imperfect compliance by generalizing several
existing restrictions on potential treatments—such as total monotonicity, one-sided noncom-
pliance, and personalized encouragement—into a weaker concept of monotonicity. Second, it
derives a general identification result that remains valid even when aforementioned assump-
tions are violated.

The structure of this paper is as follows: Section 2 introduces the baseline settings and
notations, presents the weak concept of monotonicity, and defines the parameters of inter-
est. Section 3 addresses the general identification results of the parameters and their special
cases. Section 4 proposes a two-stage estimation procedure and derives its asymptotic proper-
ties. Section 5 evaluates the proposed estimator through Monte Carlo simulations. Section 6
provides an empirical illustration using experimental data from Dupas, Keats, and Robinson
(2019). Section 7 concludes the paper.

2 Model

This section discusses the settings, assumptions, and parameters of interest. First, I introduce
the notations and baseline setup of this paper. I examine various restrictions on potential
treatments used in the literature, and then, I present a generalization of those restrictions in
Assumption 2. Lastly, I define the parameters of interest in Definition 3.

2.1 The Basic Setup

Consider a population consisting of 𝐺 independent groups. Within each group, there are two
units denoted by 𝑖 = 1,2. For each unit 𝑖 in group 𝑔, there are two binary random variables
𝑍𝑖𝑔, and 𝐷𝑖𝑔. The variable 𝑍𝑖𝑔 takes the value 1 if unit 𝑖 in group 𝑔 is assigned to the treatment
group, while 𝐷𝑖𝑔 takes the value 1 if that unit actually takes up the treatment.

To simplify the notation, I omit the group index subscript 𝑔 when it does not make con-
fusion. Throughout this paper, I use 𝑖 ∈ {1,2} to denote a generic unit index and 𝑗 = 3− 𝑖
to denote the index of the other unit. Let 𝒁 = (𝑍1, 𝑍2) and 𝑫 = (𝐷1, 𝐷2) represent vectors
of treatment assignments and treatment take-up statuses for a group. For unit 𝑖 ∈ {1,2}, I
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define 𝒁𝑖 = (𝑍𝑖, 𝑍 𝑗 ) and 𝑫𝑖 = (𝐷𝑖, 𝐷 𝑗 ), where the first component corresponds to unit 𝑖’s
own variable, and the second component corresponds to the other unit’s variable. Similarly,
for a given treatment assignment 𝒛 ∈ {0,1}2 and treatment take-up status 𝒅 ∈ {0,1}2, I de-
fine 𝒛𝑖 = (𝑧𝑖, 𝑧 𝑗 ) and 𝒅𝑖 = (𝑑𝑖, 𝑑 𝑗 ). Next, for unit 𝑖, let 𝐷𝑖 (𝒛𝑖) denote the potential treatment
take-up when the treatment assignment is given by 𝒛𝑖, and let 𝑌𝑖 (𝒅𝑖, 𝒛𝑖) denote the poten-
tial outcome when the treatment assignment and treatment take-up are given by 𝒛𝑖 and 𝒅𝑖.
Additionally, let 𝒀 = (𝑌1,𝑌2) be the vector of observed outcomes for both units. Lastly, let
𝑿 = (𝑋1, 𝑋2) represent a vector of covariates, including both unit-specific characteristics and
group characteristics, and denote 𝑿𝑖 = (𝑋𝑖, 𝑋 𝑗 ). To begin with, I consider Assumption 1.

Assumption 1.

(A) (Exclusion Restriction I) For each unit 𝑖 ∈ {1,2} and for each 𝒅 ∈ {0,1}2,

𝑌𝑖 (𝒅, 𝒛) = 𝑌𝑖 (𝒅, 𝒛′) ∀𝒛, 𝒛′ ∈ {0,1}2.

(B) (Conditional Independence) Treatment assignments 𝒁 = (𝑍1, 𝑍2) are independent of

potential outcomes and potential treatment take-ups, conditional on 𝑿, i.e.,{
(𝑌𝑖 (𝒅𝑖, 𝒛𝑖), 𝐷𝑖 (𝒛𝑖)) : (𝒅𝑖, 𝒛𝑖) ∈ {0,1}4, 𝑖 ∈ {1,2}

}
⊥ 𝒁 |𝑿 .

(C) (Overlap) Pr(𝒁𝑖 = 𝒛 |𝑿) > 0 with probability 1, for all 𝒛 ∈ {0,1}2 and 𝑖 ∈ {1,2}.

As often assumed in the literature, Assumption 1-(A), (B) ensure that the treatment as-
signment 𝒁 is (conditionally) randomly assigned across groups, and thus serves as a valid
instrument for the endogenous treatment 𝑫. In particular, according to Assumption 1-(A),
the potential outcome can be expressed solely as a function of the treatment take-up: 𝑌𝑖 (𝒅𝑖) =
𝑌𝑖 (𝒅𝑖, 𝒛), for all 𝒛 ∈ {0,1}2. Assumption 1-(C) is the standard overlap assumption that guar-
antees the existence of corresponding conditional expectations.

Given the setting, I explicitly examine two types of interactions between units. The first
is the interaction in the treatment take-up decision, where each unit’s potential treatment de-
pends on both their own and others’ treatment assignments (𝐷𝑖 = 𝐷𝑖 (𝒛𝑖) = 𝐷𝑖 (𝑧𝑖, 𝑧 𝑗 )). The
second is the spillover in potential outcomes, where each unit’s potential outcome is deter-
mined by the treatment take-up status of both units (𝑌𝑖 =𝑌𝑖 (𝒅𝑖) =𝑌𝑖 (𝑑𝑖, 𝑑 𝑗 )). This situation is
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depicted in Figure 2. In the following subsection, we will discuss how each of these interac-
tions complicates the problem.

Figure 2: Two Layers of Interactions

𝑍1 𝐷1 𝑌1

𝑍2 𝐷2 𝑌2

2.2 Monotonicity and Compliance Types

Imperfect compliance can introduce endogeneity in treatment take-up. The distribution of po-
tential outcomes can vary based on different compliance patterns. Therefore, understanding
these compliance and non-compliance patterns is crucial for defining and analyzing causal ef-
fects. This section discusses various assumptions, such as monotonicity, and corresponding
compliance types defined in different settings.

2.2.1 Classical Case: Single-Unit

The compliance pattern of each unit is determined by the distribution of their potential treat-
ments. To illustrate, consider the case of a single-unit (𝑁 = 1). There are two potential
treatment takeup statuses: when the unit is treated (𝐷 (1)), and when it is untreated (𝐷 (0)).
Since each status is binary, there are 4 (22) possible compliance types for each unit. As sum-
marized in Table 1, each unit is classified by always-taker if 𝐷 (1) = 𝐷 (0) = 1, complier if
𝐷 (1) = 1, 𝐷 (0) = 0, defier if 𝐷 (1) = 0, 𝐷 (0) = 1, and never-taker if 𝐷 (1) = 𝐷 (0) = 0.

The classical approach to identifying causal effects is excluding certain compliance types
by imposing restrictions on the distribution of potential treatments. Imbens and Angrist
(1994) introduce the monotonicity assumption, Pr (𝐷 (1) ≥ 𝐷 (0)) = 1, which excludes the
possibility of units being defiers, and thereby allows the identification of the local average
treatment effect among compliers. To distinguish the other type of monotonicities, I refer to
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Table 1: Compliance Types Without Spillovers on the Take-Up Decision

Type 𝐷 (1), or 𝐷 (1,1) = 𝐷 (1,0) 𝐷 (0), or 𝐷 (0,1) = 𝐷 (0,0)

Always-taker 1 1
Complier 1 0

Defier 0 1
Never-taker 0 0

Notes: The assumption 𝐷𝑖 (𝑧𝑖 , 𝑧 𝑗) = 𝐷𝑖 (𝑧𝑖 , 𝑧′𝑗) for all 𝑧 𝑗 , 𝑧′𝑗 ∈ {0,1} is referred to as personalized
encouragement (Kang and Imbens (2016)), treatment exclusion restriction (Blackwell (2017)), or
individualized offer response (DiTraglia et al. (2023)).

this as classical monotonicity in this paper. A similar frequently employed restriction in this
setting is one-sided noncompliance (OSN), which assumes that only units in the treatment
group can decide whether to take the treatment, while units in the control group cannot, i.e.,
Pr (𝐷 (0) = 0) = 1. Thus, OSN excludes not only defiers but also always-takers. Although
verifying these restrictions will not be straightforward since we do not observe all potential
treatment statuses, the OSN situation can be evident by the design of the experiment, such as
providing non-transferable voucher for the treatment take-up.

2.2.2 Restrictions on Potential Treatments

Consider a more general case with two units in each group (𝑁 = 2), which is the primary
focus of this paper. If treatment take-up responses are determined by both their own and the
other unit’s treatment assignments, there are 4 potential treatment statuses: 𝐷 (1,1), 𝐷 (1,0),
𝐷 (0,1), and 𝐷 (0,0). Given that each potential treatment is binary, there are 16 (24) possible
compliance types for each unit. Furthermore, considering two units, there are a total of 256
(162) possible joint compliance types for both units as noted by Kormos, Lieli, and Huber
(2023). However, as in classical cases, not all scenarios are of interest, and some compli-
ance types can be excluded by imposing appropriate restrictions on the potential treatment
distribution.

One can simply assume there is no interactions in the treatment take-up decision (e.g.,
Kang and Imbens (2016), Blackwell (2017), DiTraglia et al. (2023)), as illustrated in panel
(b) of Figure 1. Then, as in the single-unit case, there are 4 compliance types for each unit,
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as summarized in Table 1, and the classical monotonicity can be applied correspondingly.
However, this assumption is obviously strong, as it excludes any interference in the treatment
take-up. For instance, it is violated when each unit is able to take the treatment if at least one
unit in the pair is assigned to the treatment group.

Another approach is to extend classical monotonicity to cases with two units. For exam-
ple, one can define an almost-sure ordering on the set D := {(𝐷𝑖 (𝑧𝑖, 𝑧 𝑗 ), 𝐷 𝑗 (𝑧 𝑗 , 𝑧𝑖)) : (𝑧𝑖, 𝑧 𝑗 ) ∈
{0,1}2}. For example, Vazquez-Bare (2023a) assumes the following ordering:

𝐷𝑖 (1,1) ≥ 𝐷𝑖 (1,0) ≥ 𝐷𝑖 (0,1) ≥ 𝐷𝑖 (0,0), with probability 1, (1)

for all 𝑖 ∈ {1,2}. Because this is a almost-sure total ordering, I refer to this as total monotonic-

ity to distinguish it from the other monotonicities used in this paper. Under total monotonicity,
9 out of 16 compliance types are excluded for each unit. The interpretation of those 5 com-
pliance type according the total monotonicity (1) is summarized in Table 2. A weaker version
of total monotonicity assumes partial ordering on the set D. For instance, some studies use
𝐷𝑖 (1, 𝑧) ≥ 𝐷𝑖 (0, 𝑧) for each 𝑧 ∈ {0,1} (e.g., Imai, Jiang, and Malani (2021), Vazquez-Bare
(2023b) , Hoshino and Yanagi (2023), Ohnishi and Sabbaghi (2024)). I call this as marginal

monotonicity in this paper. However, compared to the classical monotonicity that is equiva-
lent to excluding the possibility of being a defier, the total/marginal monotonicity are stronger
since they exclude many compliance patterns, and may be difficult to interpret.

As in the single-unit case, the one-sided noncompliance (OSN) assumption can be appli-
cable in specific experimental designs, where it is extended by 𝐷 (0,1) = 𝐷 (0,0) = 0 with
probability 1. This assumption also significantly reduces the number of possible compliance
types, and when the OSN assumption and total monotonicity are combined, each unit has 3
possible compliance types as summarized in Table 2.

2.2.3 A Generalization of Monotonicity

While personalized encouragement, OSN, and total/marginal monotonicity facilitate the iden-
tification of specific causal effects, they are not universally applicable. Consider the following
scenario for 𝑖 ∈ {1,2}:

Pr(𝐷𝑖 (0,0) = 0) = 1. (2)
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Table 2: Compliacne Types with Total Monotonicity or OSN

Type 𝐷 (1,1) 𝐷 (1,0) 𝐷 (0,1) 𝐷 (0,0)

Always taker (AT) 1 1 1 1
Social complier (SC) 1 1 1 0
Complier (C) 1 1 0 0
Cross defier (CD) 0 1 0 0
Group complier (GC) 1 0 0 0
Never taker (NT) 0 0 0 0

Notes: This table shows 6 possible compliance types under one-sided noncompliance (OSN) or total
monotonicity. Each classification follows those used in Vazquez-Bare (2023b), Hoshino and Yanagi
(2023), and Kormos, Lieli, and Huber (2023). Under total monotonicity (1), the cross-defier is
excluded, resulting in 5 compliance types. By contrast, under OSN (𝐷𝑖 (0, 𝑧) = 0 a.s., for 𝑧 ∈ {0,1}),
the always taker and social complier are excluded, resulting in 4 compliance types. Therefore,
when combining OSN and total monotonicity, we have only 3 compliance types: complier, group
complier, and never taker.

This means that if both units are in the control group, neither can take the treatment. On the
other hand, units could take the treatment if at least one unit is treated. I refer to this situa-
tions as Weak One-Sided Noncompliance (WOSN). In this case, the distributions of 𝐷𝑖 (1,1),
𝐷𝑖 (1,0), and 𝐷𝑖 (0,1) remain unrestricted, which means there is no almost-sure ordering on
these potential treatment statuses. Therefore, WOSN violates total/marginal monotonicity. In
addition, while WOSN is implied by OSN, it does not necessarily imply OSN, as 𝐷 (0,1) = 1
could occur with positive probability.

A key distinction of this study from existing literature is that cases such as WOSN are
still of interest. Therefore, I focus on some ordering of potential treatments that holds only
for specific treatment assignment scenarios, rather than for all or many possible scenarios. To
this end, I first define monotone pairs as follows.

Definition 1 (Monotone Pair). Let M be a collection of triples (𝒛, 𝒛′, 𝒓), where 𝒛, 𝒛′ ∈ {0,1}2,
and 𝒓 ∈ {−1,1}2 such that 𝑟𝑖 (𝐷𝑖 (𝒛𝑖) −𝐷𝑖 (𝒛′𝑖)) ≥ 0 for all 𝑖 ∈ {1,2}, i.e,

M :=
{
(𝒛, 𝒛′, 𝒓) : 𝑟𝑖 (𝐷𝑖 (𝒛𝑖) −𝐷𝑖 (𝒛′𝑖)) ≥ 0, 𝑖 ∈ {1,2}

}
.

And define elements 𝒎 ∈M as a monotone pair if it exists.
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Any almost-sure ordering on potential treatment can be expressed using monotone pairs.
For instance, an almost-sure equality such as 𝐷𝑖 (𝒛𝑖) = 𝐷𝑖 (𝒛′𝑖) can be written as two monotone
pairs, 𝒎1 = (𝒛, 𝒛′, 𝒓) and 𝒎2 = (𝒛′, 𝒛, 𝒓), for a given 𝒓.

The vector 𝒓 specifies the direction of monotonicity. It will mostly be the same for both
units, i.e., (1,1) or (−1,−1). However, the direction can be opposite for the two units. For
instance, let 𝒛 = (1,0) and 𝒛′ = (0,1). If we impose 𝐷𝑖 (1,0) ≥ 𝐷𝑖 (0,1) for both units, then
𝒛 and 𝒛′ form a monotone pair, but the direction is flipped for unit 2 since 𝒛2 = (0,1) and
𝒛′2 = (1,0).

Note that any monotone pair 𝒎 ∈ M with the same direction, we can assume 𝑟1 = 𝑟2 = 1
without loss of generality since we can exchange the first and the second assignment to obtain
another monotone pair with the opposite direction. As the following arguments are mostly
about the monotone pairs with the same directions, I focus on the collection: M1 = {(𝒛, 𝒛′) :
𝒎 ∈M, 𝑟1 = 𝑟2 = 1}. By abusing notation, I call a member in M1 as also a monotone pair.

If there are no restrictions on the potential treatment distribution, then M or M1 are
empty. However, since such cases are not of interest in this paper, I assume we have at least
one monotone pair with the same direction. Thus, the monotonicity assumption used in this
study is stated as follows.

Assumption 2 (Monotonicity). M1 is nonempty.

The restrictions on potential treatments discussed in Section 2.2.2 can be represented by
an appropriate set of monotone pairs. Also, any other set of restrictions on the ordering of
potential treatments can be represented as monotone pairs. Therefore, Assumption 2 is not
only a natural generalization of total/marginal monotonicity but also a general restriction on
the potential treatment distribution. In particular, compared to total monotonicity (1), which
imposes an almost-sure total ordering on the set D, Assumption 2 focus on almost-sure
partial ordering on D. For each monotone pair, the corresponding concept of compliance
types are defined as follows:

Definition 2 (Compliance Types). Suppose 𝒎 = (𝒛, 𝒛′, 𝒓) is a monotone pair. Then define a
unit 𝑖 as 𝒎-always-taker if 𝐷𝑖 (𝒛𝑖) = 𝐷𝑖 (𝒛′𝑖) = 1, 𝒎-never-taker if 𝐷𝑖 (𝒛𝑖) = 𝐷𝑖 (𝒛′𝑖) = 0, and
𝒎-complier if 𝑟𝑖 (𝐷𝑖 (𝒛𝑖) −𝐷𝑖 (𝒛′𝑖)) > 0, conditional on 𝑿 with probability 1, respectively.
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Table 3 describes the monotone pairs induced by personalized encouragement with clas-
sical monotonicity, total monotonicity, one-sided noncompliance, and weak one-sided non-
compliance. Under total monotonicity or personalized encouragement, all possible pairs
(𝒛, 𝒛′) ∈ {0,1}4 can be formed as monotone pairs for some direction. However, since one-
sided noncompliance does not impose any ordering on 𝐷 (1,1), 𝐷 (1,0), some treatment as-
signments cannot form a monotone pair, as shown in Panel (c) of Table 3. Thus, the collection
M induced by one-sided noncompliance is smaller than that of total monotonicity, or person-
alized encouragement. Additionally, there are only two monotone pairs under weak one-sided
noncompliance.

Type𝑖 in Table 3 present the interpretation of each 𝒎-complier In Panel (a), a unit is
complier (C) if 𝐷𝑖 (1) > 𝐷𝑖 (0). In Panel (b), (c), and (d), the interpretation is from the classi-
fication in Table 2. That is, unit 𝑖 is complier (C) if 𝐷𝑖 (1,0) > 𝐷𝑖 (0,0), social complier (SC)
if 𝐷𝑖 (0,1) > 𝐷𝑖 (0,0), group complier (GC) if 𝐷𝑖 (1,1) > 𝐷𝑖 (1,0), and cross-defier (CD) if
𝐷𝑖 (0,1) > 𝐷𝑖 (1,0).

In general, these interpretations are context-dependent and determined by the entire set
M and specific values of 𝒎. In particular, the interpretation of the 𝒎-compliance type might
differ between the two units unless 𝒛1 = 𝒛2. For example, consider a monotone pair 𝒎1 =

((1,1), (1,0), (1,1)) under total monotonicity in the first column of Panel (b). Unit 1 is an
𝒎1-complier if 𝐷 (1,1) > 𝐷 (1,0), while unit 2 is an 𝒎1-complier if 𝐷 (1,1) > 𝐷 (0,1). In this
case, unit 1 is classified as a group complier (GC), and unit 2 is classified as either a group
complier (GC) or a complier (C).

When there are more than two monotone pairs, it becomes possible to further divide
the 𝒎-complier into finer compliance types. For example, consider another monotone pairs
𝒎2 = ((1,1), (0,1), (1,1)) and 𝒎4 = ((1,0), (0,1), (1,−1)) under total monotonicity. Unit
2 is an 𝒎2-complier if it is a group complier (GC), and an 𝒎4-complier if it is a complier
(C). Therefore, the 𝒎1-complier for unit 2 can be further divided into 𝒎2-complier and 𝒎4-
complier.

2.3 Potential Outcomes and Parameters of Interest

The potential outcome is defined based on treatment take-up statuses of both units to ex-
plicitly account for interference in determining potential outcomes, thus violating SUTVA.

14



Table 3: Monotone Pairs

(a) Personalized Encouragement + Classical Monotonicity

𝒛 (1,1) (1,1) (1,1) (1,0) (1,0) (0,1)
𝒛′ (1,0) (0,1) (0,0) (0,1) (0,0) (0,0)
𝒓 (1,1), (-1,1) (1,1), (1,-1) (1,1) (1,-1) (1,1) (1,-1) (1,1) (1,-1)

Type1 C C C C
Type2 C C C C

(b) Total Monotonicity

𝒛 (1,1) (1,1) (1,1) (1,0) (1,0) (0,1)
𝒛′ (1,0) (0,1) (0,0) (0,1) (0,0) (0,0)
𝒓 (1,1) (1,1) (1,1) (1,-1) (1,1) (1,1)

Type1 GC GC, C GC, C, SC C C, SC SC
Type2 GC,C GC GC, C, SC C SC C, SC

(c) One-Sided Nomcompliance

𝒛 (1,1) (1,1) (1,1) (1,0) (1,0) (0,1)
𝒛′ (1,0) (0,1) (0,0) (0,1) (0,0) (0,0)
𝒓 (1,1) (1,-1) (1,1), (1,-1) (1,1), (1,-1)

Type1 GC, or C C, or CD C, or CD
Type2 GC, or C C, or CD C, or CD

(d) Weak One-Sided Nomcompliance

𝒛 (1,1) (1,1) (1,1) (1,0) (1,0) (0,1)
𝒛′ (1,0) (0,1) (0,0) (0,1) (0,0) (0,0)
𝒓 (1,1) (1,1)

Type1 C SC
Type2 SC C

Notes: Panel (a), (b), (c) and (d) show the monotone pairs 𝒎 = (𝒛, 𝒛′, 𝒓) under personalized en-
couragement with classical monotonicity 𝐷𝑖 (1) ≥ 𝐷𝑖 (0), total monotonicity 𝐷 (1,1) ≥ 𝐷 (1,0) ≥
𝐷 (0,1) ≥ 𝐷 (0,0), one-sided noncompliance 𝐷 (0,1) = 𝐷 (0,0) = 0, and weak one-sided noncom-
pliance 𝐷 (0,0) = 0, respectively. Type𝑖 denotes the interpretation of 𝒎-complier for each unit,
following the definitions in Table 1 (for panel (a)) and Table 2 (for panel (b), (c), and (d)).
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Suppose the observed outcome is given by 𝑌𝑖 = 𝑌𝑖 (𝑫𝑖) = 𝑌𝑖 (𝐷𝑖, 𝐷 𝑗 ). Then, it can be written
as:

𝑌𝑖 =
∑︁

𝒅∈{0,1}2

1{𝑫𝑖 = 𝒅}𝑌𝑖 (𝒅)

= 𝑌𝑖 (0,0) +Δ𝑖𝑌𝑖 (0)𝐷𝑖 +Δ 𝑗𝑌𝑖 (0)𝐷 𝑗 +Δ2𝑌𝑖𝐷𝑖𝐷 𝑗 (3)

where Δ𝑖𝑌𝑖 (𝑑) = 𝑌𝑖 (1, 𝑑) −𝑌𝑖 (0, 𝑑), Δ 𝑗𝑌𝑖 (𝑑) = 𝑌𝑖 (𝑑,1) −𝑌𝑖 (𝑑,0), for 𝑑 ∈ {0,1}, and Δ2𝑌𝑖 =

𝑌𝑖 (1,1) −𝑌𝑖 (0,1) −𝑌𝑖 (1,0) +𝑌𝑖 (0,0) = Δ𝑖𝑌𝑖 (1) −Δ𝑖𝑌𝑖 (0). The Δ𝑖𝑌𝑖 (𝑑) is interpreted as the
direct effect on unit 𝑖’s outcome, in the sense that it represents the causal effect on the outcome
resulting from changes in own treatment when the partner’s treatment take-up is fixed at
𝑑 ∈ {0,1}. Similarly, Δ 𝑗𝑌𝑖 (𝑑) is interpreted as the indirect effect on unit 𝑖’s outcome when its
own treatment status is fixed at 𝑑.

The parameters of interest are the average local direct (Δ𝑖𝑌𝑖 (𝑑)) and indirect (Δ 𝑗𝑌𝑖 (𝑑))
effects. Suppose we have a monotone pair 𝒎 = (𝒛, 𝒛′, 𝒓). Denote 𝒛𝑖 = (𝑧𝑖, 𝑧3−𝑖), 𝒛′𝑖 = (𝑧′

𝑖
, 𝑧′3−𝑖)

for each 𝑖 ∈ {1,2}, and define 𝐾𝒎
𝑖

:= 𝑟𝑖 (𝐷𝑖 (𝒛𝑖) − 𝐷𝑖 (𝒛′𝑖)). Then, 𝐾𝒎
𝑖

is a binary random
variable that takes a value of 1 if unit 𝑖 is an 𝒎-complier. The parameters of interest in this
study are defined as follows.

Definition 3 (Parameters of Interest). For each 𝑖 ∈ {1,2}, 𝑗 = 3− 𝑖, and 𝑑 ∈ {0,1},

𝛿𝒎𝑖 (𝑑) := 𝐸 [𝑌𝑖 (1, 𝑑) −𝑌𝑖 (0, 𝑑) |𝐾𝒎
𝑖 = 1] = 𝐸 [Δ𝑖𝑌𝑖 (𝑑) |𝐾𝒎

𝑖 = 1],
𝜃𝒎𝑖 (𝑑) := 𝐸 [𝑌𝑖 (𝑑,1) −𝑌𝑖 (𝑑,0) |𝐾𝒎

𝑗 = 1] = 𝐸 [Δ 𝑗𝑌𝑖 (𝑑) |𝐾𝒎
𝑗 = 1] .

(4)

The term 𝛿𝒎
𝑖
(𝑑) represents the local average direct effect, which is the average change

in the outcome due to a unit’s own treatment take-up when the unit is 𝒎-complier and the
other unit’s take-up status is fixed at 𝑑. Similarly, 𝜃𝒎

𝑖
(𝑑) represents the local average indirect

treatment effect, capturing the average changes from the other unit’s treatment take-up when
the other unit is 𝒎-complier, and own treatment status is fixed at 𝑑. Because the interpre-
tations of 𝒎-compliers are determined by an empirical context, the interpretations of these
parameters are also context-specific.

As noted, multiple monotone pairs can imply finer and disjoint compliance types. In this
case, the corresponding local average effects can also be expressed by a weighted averages

16



of those of finer compliance types. See Appendix C for a detailed example.

3 Identification

This section discusses the identification of causal parameters defined in (4). The goal is
to identify these parameters under weaker restrictions on the potential treatment than to-
tal/marginal monotonicity, one-sided noncompliance, and personalized encouragement.

I present that the intention-to-treat (ITT) effects on the outcome can be represented by a
weighted average of the parameters, which I call the ITT equation. I then propose a general
result showing that the parameters are identified as coefficients in the ITT equation, provided
there is an additional exclusion restriction for the compliance types.

Furthermore, I analyze special cases. This includes cases under the restrictions discussed
in Section 2.2.2 and cases where we don’t need additional exclusion restrictions. These
cases are particularly noteworthy because they include existing identification results in the
literature, such as the local average treatment effects proposed in Imbens and Angrist (1994)
with classical monotonicity, or Vazquez-Bare (2023b) with total monotonicity and one-sided
noncompliance.

3.1 Intention-to-Treat Effects on Outcomes

The intention-to-treat (ITT) effect on an outcome is defined as the difference between the
average observed outcomes under two different treatment assignments. The following lemma
summarizes the relationship between the ITT effect on the outcome, the causal effects (Δ𝑖𝑌𝑖
and Δ 𝑗𝑌𝑖), and the compliance types (𝐾𝒎

𝑖
).

Lemma 1. Suppose Assumptions 1 and 2 hold, and let 𝒎 = (𝒛, 𝒛′, 𝒓) ∈ M be a monotone

pair. Then, the conditional intention-to-treat (ITT) effect on the outcome of unit 𝑖 ∈ {1,2}
with respect to the monotone pair 𝒎 is given by

𝐼𝑇𝑇𝒎
𝑖 (𝑿) : = 𝐸 [𝑌𝑖 |𝒁𝑖 = 𝒛𝑖,𝑿] −𝐸 [𝑌𝑖 |𝒁𝑖 = 𝒛′𝑖,𝑿]

= 𝑟𝑖𝐸 [𝐾𝒎
𝑖 Δ𝑖𝑌𝑖 (0) |𝑿] + 𝑟 𝑗𝐸 [𝐾𝒎

𝑗 Δ 𝑗𝑌𝑖 (0) |𝑿] + 𝑟𝑖𝑟 𝑗𝐸 [𝐾𝒎
𝑖 𝑗 Δ

2𝑌𝑖 |𝑿], (5)
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where 𝐾𝒎
𝑖

:= 𝑟𝑖
[
𝐷𝑖 (𝒛𝑖) −𝐷𝑖 (𝒛′𝑖)

]
, 𝐾𝒎

𝑖 𝑗
:= 𝑟𝑖𝑟 𝑗

[
𝐷𝑖 (𝒛𝑖)𝐷 𝑗 (𝒛 𝑗 ) −𝐷𝑖 (𝒛′𝑖)𝐷 𝑗 (𝒛′𝑗 )

]
, and 𝑗 = 3− 𝑖

is the other unit’s index.

This relationship directly follows from (3) and Assumption 1. The first two terms in (5)
are related to the direct and indirect effects of 𝒎-compliers, and the marginal distributions for
each unit to be 𝒎-compliers. Recall that 𝐾𝒎

𝑖
is a binary variable that indicates unit 𝑖 being

a 𝒎-complier. Furthermore, because 𝐸 [𝐷𝑖 (𝒛𝑖)] = 𝐸 [𝐷𝑖 |𝒁𝑖 = 𝒛𝑖] from Assumption 1, the
distribution of 𝐾𝒎

𝑖
is identified by Pr(𝐾𝒎

𝑖
= 1) = 𝐸 [𝐾𝒎

𝑖
] = 𝑟𝑖 (𝐸 [𝐷𝑖 |𝒁𝑖 = 𝒛𝑖] −𝐸 [𝐷𝑖 |𝒁𝑖 = 𝒛′

𝑖
]),

which is an ITT effect of 𝐷𝑖. By constrast, the last term in (5) is related to the joint distribution
of compliance types for units, which is not generally identifiable. However, for monotone
pairs with the same direction, i.e., 𝑟1 = 𝑟2, 𝐾𝒎

𝑖 𝑗
is also a binary variable, and its distribution is

identified by an ITT effect of 𝐷𝑖𝐷 𝑗 , similar to 𝐾𝒎
𝑖

as shown in Proposition 1.

Proposition 1 (Distribution of 𝒎-Compliers). Suppose Assumptions 1 and 2 hold, and let

𝒎 = (𝒛, 𝒛′) ∈ M1. Let 𝑻 be a subset of the set of exogenous variables in 𝑿. Then, the

following conditional distributions are identified:

𝑃𝒎
𝑖 (𝑻) := Pr(𝐾𝒎

𝑖 = 1|𝑻) = 𝐸
[
𝐸 [𝐷𝑖 |𝒁𝑖 = 𝒛𝑖,𝑿] −𝐸 [𝐷𝑖 |𝒁𝑖 = 𝒛′𝑖,𝑿]

��𝑻]
,

𝑃𝒎
𝑖 𝑗 (𝑻) := Pr(𝐾𝒎

𝑖 𝑗 = 1|𝑻) = 𝐸
[
𝐸 [𝐷𝑖𝐷 𝑗 |𝒁𝑖 = 𝒛𝑖,𝑿] −𝐸 [𝐷𝑖𝐷 𝑗 |𝒁𝑖 = 𝒛′𝑖,𝑿]

��𝑻]
,

(6)

In particular, the unconditional distributions 𝑃𝒎
𝑖
= Pr(𝐾𝒎

𝑖
= 1) and 𝑃𝒎

𝑖 𝑗
= Pr(𝐾𝒎

𝑖 𝑗
= 1) are

also identified by not conditioning on 𝑻 in (6).

Suppose we have a monotone pair 𝒎 ∈ M1, and define 𝜁𝒎
𝑖

:= 𝐸 [Δ2𝑌𝑖 |𝐾𝒎
𝑖 𝑗

= 1]. Then,
by integrating over the distribution of 𝑿 and applying law of iterative expectation on (5), we
obtain the following expression:

𝐸 [𝐼𝑇𝑇𝒎
𝑖 (𝑿)] = 𝛿𝒎𝑖 (0)𝑃𝒎

𝑖 + 𝜃𝒎𝑖 (0)𝑃𝒎
𝑗 + 𝜁𝒎𝑖 𝑃𝒎

𝑖 𝑗 . (7)

Therefore, the (unconditional) ITT effect of outcome is expressed as a weighted average of
the coefficients 𝛿𝒎

𝑖
(0), 𝜃𝒎

𝑖
(0), and 𝜁𝒎

𝑖
. Specifically, the first two coefficients are the causal

parameters of interest defined in (4). The last coefficient 𝜁𝒎
𝑖

in the last term is not of primary
interest at this point because interpreting the local average 𝜁𝒎

𝑖
is not straightforward.2 This

2This coefficient can be considered a measure of the cross-derivative of the outcome with respect to the
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is because the conditioning event occurs when both units are 𝒎-compliers, or when one unit
is an 𝒎-complier and the other unit is an 𝒎-always-taker. In Section 3.3, I discuss special
cases when this coefficient has a clear interpretation, which results in the cancellation of the
last term.

3.2 Identification with Additional Exclusion Restriction

Equation (7) can be seen as a single equation with three unknowns: 𝛿𝒎
𝑖
(0), 𝜃𝒎

𝑖
(0), and 𝜁𝒎

𝑖
.

The main idea to recover these unknowns from the ITT equation (7) is to use exogenous
variation in the distributions 𝑃𝒎

𝑖
and 𝑃𝒎

𝑖 𝑗
by introducing additional exclusion restrictions on

the endogenous treatment. Suppose there exists 𝑻, a subset of exogenous variables in 𝑿, that
satisfies:

𝐸 [𝐼𝑇𝑇𝒎
𝑖 (𝑿) |𝑻] = 𝛿𝒎𝑖 (0)𝑃𝒎

𝑖 (𝑻) + 𝜃𝒎𝑖 (0)𝑃𝒎
𝑗 (𝑻) + 𝜁𝒎𝑖 𝑃𝒎

𝑖 𝑗 (𝑻). (8)

Then, since the conditional distributions 𝑃𝒎
𝑖
(𝑻) and 𝑃𝒎

𝑖 𝑗
(𝑻) are identified by Proposition 1,

the parameters can be identified as linear coefficients in this ITT equation. Note that (8) is
the conditional expectation version of (7), and the coefficients are conditional expectations
conditioned on the compliance types. Therefore, the required condition for 𝑻 is that it needs
to be correlated with the compliance types to generate some exogenous variation in 𝑃𝒎

𝑖
(𝑻)

and 𝑃𝒎
𝑖 𝑗
(𝑻), but it does not need to be correlated with the potential outcome once the compli-

ance types are given. Since the compliance types are determined by the potential treatment
take-up, 𝑻 can be considered as an additional exclusion restriction. Before formally stating
the required conditions, consider a simple example to illustrate this idea.

Example 1. Let 𝒎 = (𝒛, 𝒛′) ∈ M1 be a monotone pair with the same direction. Suppose
the exogenous variables 𝑿 include a discrete random variable 𝑇 that only takes values in
{𝑡1, 𝑡2, 𝑡3}. Assume that 𝑇 is correlated with the potential treatment take-up, and therefore
correlated with 𝐾𝒎

𝑖
,𝐾𝒎

𝑗
and 𝐾𝒎

𝑖 𝑗
. Also assume that 𝑇 is independent of potential outcomes,

once the distributions of potential treatment take-up (𝐷𝑖 (·), 𝐷 𝑗 (·)) are given. Then, by in-
tegrating (5) over the conditional distribution of 𝑿 given 𝑇 , we have ITT equation (8): for

treatments of both units, effectively capturing the interaction effects of the treatments on the outcomes. This
coefficient corresponds to the local average indirect effect (LAIE) as defined by Hoshino and Yanagi (2023).
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ℓ = 1,2,3,

𝐸 [𝐼𝑇𝑇𝒎
𝑖 (𝑿) |𝑇 = 𝑡ℓ] = 𝛿𝒎𝑖 (0)𝑃𝒎

𝑖 (𝑡ℓ) + 𝜃𝒎𝑖 (0)𝑃𝒎
𝑗 (𝑡ℓ) + 𝜁𝒎𝑖 𝑃𝒎

𝑖 𝑗 (𝑡ℓ),

In this example, the parameters can be recovered by

©­­«
𝛿𝒎
𝑖
(0)

𝜃𝒎
𝑖
(0)
𝜁𝒎
𝑖

ª®®¬ =
©­­­«
𝑃𝒎
𝑖
(𝑡1) 𝑃𝒎

𝑗
(𝑡1) 𝑃𝒎

𝑖 𝑗
(𝑡1)

𝑃𝒎
𝑖
(𝑡2) 𝑃𝒎

𝑗
(𝑡2) 𝑃𝒎

𝑖 𝑗
(𝑡2)

𝑃𝒎
𝑖
(𝑡3) 𝑃𝒎

𝑗
(𝑡3) 𝑃𝒎

𝑖 𝑗
(𝑡3)

ª®®®¬
−1 ©­­«

𝐸 [𝐼𝑇𝑇𝒎
𝑖
(𝑿) |𝑇 = 𝑡1]

𝐸 [𝐼𝑇𝑇𝒎
𝑖
(𝑿) |𝑇 = 𝑡2]

𝐸 [𝐼𝑇𝑇𝒎
𝑖
(𝑿) |𝑇 = 𝑡3]

ª®®¬ , (9)

for each 𝑖 ∈ {1,2}, if the matrix including 𝑃𝒎
𝑖
(𝑡ℓ) and 𝑃𝒎

𝑖 𝑗
(𝑡ℓ) is invertible. □

The following assumption formally states the required conditions for such additional ex-
clusion restrictions in terms of appropriate mean independence.

Assumption 3 (Exclusion Restriction II). The exogenous variables 𝑿 = (𝑋1, 𝑋2) are di-

vided into two parts: 𝑋𝑖 = (𝑊𝑖,𝑇𝑖), 𝑖 ∈ {1,2}. For the vector of exogenous variables 𝑻 =

(𝑇1,𝑇2), assume 𝐸 [Δ𝑖𝑌𝑖 (0) |𝐾𝒎
𝑖
,𝑻] = 𝐸 [Δ𝑖𝑌𝑖 (0) |𝐾𝒎

𝑖
], 𝐸 [Δ 𝑗𝑌𝑖 (0) |𝐾𝒎

𝑗
,𝑻] = 𝐸 [Δ 𝑗𝑌𝑖 (0) |𝐾𝒎

𝑗
],

and 𝐸 [Δ2𝑌𝑖 |𝐾𝒎
𝑖 𝑗
,𝑻] = 𝐸 [Δ2𝑌𝑖 |𝐾𝒎

𝑖 𝑗
] for each 𝒎 ∈M1.

As shown in Example 1, if 𝑻 is a vector of exogenous variables satisfying Assumption 3,
then we have (8) by integrating (5) over the conditional distribution of 𝑿 given 𝑻. The
ITT equation (8) can be thought of as an identifying moment condition as summarized in
Lemma 2.

Lemma 2. Suppose Assumptions 1-3 hold. Let 𝒎 = (𝒛, 𝒛′) ∈ M1 be a monotone pair, and

𝜷𝒎
𝑖 =

©­­«
𝛿𝒎
𝑖
(0)

𝜃𝒎
𝑖
(0)
𝜁𝒎
𝑖

ª®®¬ , 𝑷̃
𝒎
𝑖 (𝑻) =

©­­­«
𝑃𝒎
𝑖
(𝑻)

𝑃𝒎
𝑗
(𝑻)

𝑃𝒎
𝑖 𝑗
(𝑻)

ª®®®¬ , 𝑫̃𝑖 =
©­­«
𝐷𝑖

𝐷 𝑗

𝐷𝑖𝐷 𝑗

ª®®¬ .
Then, we have the following conditional moment restriction:

𝐸
[
𝒀̃
𝒎 − 𝑷̃

𝒎 (𝑻)𝜷𝒎
��𝑻]

= 𝐸
[
𝜔𝒎 (

𝒀 − 𝑫̃𝜷𝒎 ) ��𝑻]
= 0, (10)
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where 𝜷𝒎 = (𝜷𝒎
1
′
, 𝜷𝒎

2
′)′, 𝒀̃𝒎

= 𝜔𝒎𝒀 = 𝜔𝒎 (𝑌1,𝑌2)′, 𝑷̃
𝒎 (𝑻) is the block diagonal matrix of

𝑷̃
𝒎
1 (𝑻)′ and 𝑷̃

𝒎
2 (𝑻)′, 𝑫̃ is the block diagonal matrix of 𝑫̃′

1 and 𝑫̃
′
2, and 3

𝜔𝒎 =
1{𝒁𝑖 = 𝒛𝑖}

Pr(𝒁𝑖 = 𝒛𝑖 |𝑿)
−

1{𝒁𝑖 = 𝒛′
𝑖
}

Pr(𝒁𝑖 = 𝒛′
𝑖
|𝑿) . (11)

The following Proposition 2 demonstrates that 𝜷𝒎 is identified using the standard instru-
mental variable (IV) estimand derived from the conditional moment in (10). Assumption 4
provides a sufficient condition for this identification.

Assumption 4 (Identification I). There exists a matrix 𝑹(𝑻) ∈ R6×2 of functions of 𝑻 such

that 𝐸
[
𝑹(𝑻) 𝑷̃𝒎 (𝑻)

]
= 𝐸

[
𝜔𝒎𝑹(𝑻)𝑫̃

]
is nonsingular.

Proposition 2. Suppose Assumptions 1-4 hold, and let 𝒎 = (𝒛, 𝒛′) ∈ M1 be a monotone pair.

Then, the parameter is identified by 𝜷𝒎 = 𝐸
[
𝜔𝒎𝑹(𝑻)𝑫̃

]−1
𝐸 [𝜔𝒎𝑹(𝑻)𝒀].

For Assumption 4 to hold, 𝑻 must have at least 3 distinct values with positive probability.
This is because the rank of the 6×6 matrix 𝑹(𝑻) 𝑷̃𝒎 (𝑻) is at most 2 for a fixed 𝑻. This rank
condition for the exogenous variable 𝑻 to have sufficient variation is intuitive, as shown in
the Example 1.

However, even if 𝑻 has sufficient variations, Assumption 4 is violated if 𝑷̃
𝒎 (𝑻) is not

of full column rank with probability 1, e.g., when 𝑃𝒎
𝑖
(𝑻), 𝑃𝒎

𝑗
(𝑻), and 𝑃𝒎

𝑖 𝑗
(𝑻) are linearly

dependent. However, even in such cases, some parameters may still be identifiable, which
will be discussed in the following subsection.

3.3 Special Cases

This subsection discusses about three special cases where Assumption 4 is violated due to
the linear dependence of 𝑃𝒎

𝑖
, 𝑃𝒎

𝑗
, and 𝑃𝒎

𝑖 𝑗
. Recall that the ITT equation (7) and (8) consist

of three terms. The first special case involves the cancellation of the third interaction term,
which can occur when there is an ordering on the potential treatments of the two units. The
second special case is when the second term is zero because the potential treatment for a unit
is almost surely equal for two different treatment assignments. The third special case occurs

3The weight 𝜔𝒎 does not depend on the unit index, since 1{𝒁𝑖 = 𝒛𝑖} = 1{𝒁 𝑗 = 𝒛 𝑗 }.
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when the last two terms are canceled out, since one unit is almost surely an always-taker
or never-taker. Assumption 4 is appropriately relaxed in each of these special cases, and
particularly in the third case, some parameters can be identified without Assumption 3.

3.3.1 Identification Under Cross-Monotonicity

Since the interaction term 𝜁𝒎
𝑖
𝑃𝒎
𝑖 𝑗
(𝑻) in (8) is relates to the joint compliance pattern, the first

special case involves a scenario where the potential treatments of two units follow a specific
order. The following lemma provides an observation for this special case.

Lemma 3. Let 𝑻 be a subset of the set exogenous variable 𝑿, and 𝒛 ∈ {0,1}2 be given. For

each unit 𝑖 ∈ {1,2} and 𝑗 = 3 − 𝑖, Pr(𝐷𝑖 (𝒛𝑖) ≥ 𝐷 𝑗 (𝒛 𝑗 ) |𝑻) = 1 if and only if Pr(𝐷 𝑗 (𝒛 𝑗 ) =
𝐷𝑖 (𝒛𝑖)𝐷 𝑗 (𝒛 𝑗 ) |𝑻) = 1.

I refer to the condition Pr(𝐷𝑖 (𝒛𝑖) ≥ 𝐷 𝑗 (𝒛 𝑗 ) |𝑻) = 1 as a cross monotonicity between 𝐷𝑖 (𝒛𝑖)
and 𝐷 𝑗 (𝒛 𝑗 ) at the assignment 𝒛. If 𝒎 = (𝒛, 𝒛′) ∈ M1, and if cross monotonicity holds at both
𝒛 and 𝒛′, then Lemma 3 implies that:

𝐾𝒎
𝑖 𝑗 = 𝐷𝑖 (𝒛𝑖)𝐷 𝑗 (𝒛 𝑗 ) −𝐷𝑖 (𝒛′𝑖)𝐷 𝑗 (𝒛′𝑗 ) = 𝐷 𝑗 (𝒛 𝑗 ) −𝐷 𝑗 (𝒛′𝑗 ) = 𝐾𝒎

𝑗 , (12)

conditional on 𝑻 with probability 1. Thus we have 𝑃𝒎
𝑗
(𝑻) = 𝑃𝒎

𝑖 𝑗
(𝑻), and the coefficient 𝜁𝒎

𝑖

is now interpreted as 𝜃𝒎
𝑖
(1) − 𝜃𝒎

𝑖
(0), or 𝛿𝒎

𝑖
(1) −𝛿𝒎

𝑖
(0). Therefore, the interaction term in (8)

is cancelled out, and we have a simpler moment condition as stated in Lemma 4.

Lemma 4. Suppose Assumptions 1-3 hold. Let 𝒎 = (𝒛, 𝒛′) ∈ M1 be a monotone pair satisfy-

ing Pr(𝐷𝑖 (𝒛𝑖) ≥ 𝐷 𝑗 (𝒛 𝑗 ) |𝑻) = Pr(𝐷𝑖 (𝒛′𝑖) ≥ 𝐷 𝑗 (𝒛′𝑗 ) |𝑻) = 1, and

𝜷̌
𝒎
𝑖 =

(
𝛿𝒎
𝑖
(0)

𝜃𝒎
𝑖
(1)

)
, 𝜷̌

𝒎
𝑗 =

(
𝛿𝒎
𝑗
(1)

𝜃𝒎
𝑗
(0)

)
, 𝑷̌

𝒎
𝑖 (𝑻) =

(
𝑃𝒎
𝑖
(𝑻)

𝑃𝒎
𝑗
(𝑻)

)
, 𝑫̌𝑖 =

(
𝐷𝑖

𝐷 𝑗

)
,

Then, we have the following conditional moment restriction:

𝐸

[
𝒀̃
𝒎 − 𝑷̌

𝒎 (𝑻) 𝜷̌𝒎
���𝑻]

= 𝐸

[
𝜔𝒎

(
𝒀 − 𝑫̌ 𝜷̌

𝒎
)���𝑻]

= 0, (13)

where 𝜷̌
𝒎
= ( 𝜷̌𝒎

𝑖

′
, 𝜷̌

𝒎
𝑗

′)′, 𝒀̃𝒎
= 𝜔𝒎𝒀 = 𝜔𝒎 (𝑌𝑖,𝑌 𝑗 )′, 𝑷̌

𝒎 (𝑻) is the block diagonal matrix of
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𝑷̌
𝒎
𝑖 (𝑻)′ and 𝑷̌

𝒎
𝑗 (𝑻)′, 𝑫̌ is the block diagonal matrix of 𝑫̌

′
𝑖 and 𝑫̌

′
𝑗 .

Following Assumption 5 is a sufficient condition to identify 𝜷̌
𝒎

from conditional moment
(13) and Proposition 3 shows the IV estimand is identitifed correspondingly.

Assumption 5 (Identification II). There exists a matrix 𝑹̌(𝑻) ∈ R4×2 of functions of 𝑻 such

that 𝐸
[
𝑹̌(𝑻) 𝑷̌𝒎 (𝑻)

]
= 𝐸

[
𝜔𝒎 𝑹̌(𝑻)𝑫̌

]
is nonsingular.

Proposition 3. Suppose Assumptions 1-3, and 5 hold, and let 𝒎 = (𝒛, 𝒛′) ∈M1 be a monotone

pair satisfying Pr(𝐷𝑖 (𝒛𝑖) ≥ 𝐷 𝑗 (𝒛 𝑗 ) |𝑻) = Pr(𝐷𝑖 (𝒛′𝑖) ≥ 𝐷 𝑗 (𝒛′𝑗 ) |𝑻) = 1. Then, the parameter is

identified by 𝜷̌
𝒎
= 𝐸

[
𝜔𝒎 𝑹̌(𝑻)𝑫̌

]−1
𝐸

[
𝜔𝒎 𝑹̌(𝑻)𝒀

]
.

The following example illustrates a case when cross monotonicity is satisfied.

Remark 1 (Weak one-sided noncompliance with joint take-up). Suppose that weak one-sided
noncompliance (WOSN) in (2) holds: Pr(𝐷𝑖 (0,0) = 0|𝑿) = 1 for all 𝑖. For any 𝒛 ∈ {0,1}2,
𝐷𝑖 (𝒛) ≥ 𝐷𝑖 (0,0) = 0 with probability 1, and we have monotone pairs of (𝒛, (0,0), (1,1)).
Consider two monotone pairs 𝒎1 = ((1,0), (0,0), (1,1)) and 𝒎2 = ((0,1), (0,0), (1,1)). No-
tice that for the treatment assignment (0,0), cross monotonicity holds trivially to both units
since 𝐷1(0,0) = 𝐷2(0,0) = 0 almost surely.

Additionally, suppose units can take the treatment jointly if at least one unit is treated.
Consider the treatment assignment (1,0) where only unit 1 receives the treatment. Then,
unit 2 can take up the treatment only if both units take it jointly, i.e., 𝐷2(0,1) = 1 implies
𝐷1(1,0) = 1. Thus, we have cross monotonicity 𝐷2(0,1) ≥ 𝐷1(1,0) for the assignment
(1,0). The opposite holds for the assignment (0,1). Therefore, we can apply Proposition 3
to identify 𝛿𝒎

𝑖
(0) and 𝜃𝒎

𝑖
(1) for both units for both monotone pairs 𝒎1 and 𝒎2. □

3.3.2 Identification When 𝑃𝒎
𝑗
(𝑻) = 0

The second special case is when 𝑃𝒎
𝑗
= 0, or, equivalently 𝐷 𝑗 (𝒛) =𝐷 𝑗 (𝒛′), and hence Assump-

tion 4 is violated. In this scenario, the second term in (8) becomes zero. The corresponding
moment condition is summarized in Lemma 5.

Lemma 5. Suppose Assumptions 1-3 hold. Let 𝒎 = (𝒛, 𝒛′) ∈ M1 be a monotone pair satisfy-
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ing Pr(𝐷𝑖 (𝒛𝑖) = 𝐷 𝑗 (𝒛′𝑗 ) |𝑻) = 1, and

𝜷̄
𝒎
𝑖 =

(
𝛿𝒎
𝑖
(0)
𝜁𝒎
𝑖

)
, 𝜷̄

𝒎
𝑗 =

(
𝜃𝒎
𝑗
(0)
𝜁𝒎
𝑗

)
, 𝑷̄

𝒎
𝑖 (𝑻) =

(
𝑃𝒎
𝑖
(𝑻)

𝑃𝒎
𝑖 𝑗
(𝑻)

)
, 𝑫̄𝑖 =

(
𝐷𝑖

𝐷𝑖𝐷 𝑗

)
,

Then, we have the following conditional moment restriction:

𝐸
[
𝒀̃
𝒎 − 𝑷̄

𝒎 (𝑻) 𝜷̄𝒎 ��𝑻]
= 𝐸

[
𝜔𝒎

(
𝒀 − 𝑫̄ 𝜷̄

𝒎
)���𝑻]

= 0, (14)

where 𝜷̄
𝒎
= ( 𝜷̄𝒎

𝑖

′
, 𝜷̄

𝒎
𝑗

′)′, 𝒀̃𝒎
= 𝜔𝒎𝒀 = 𝜔𝒎 (𝑌𝑖,𝑌 𝑗 )′, 𝑷̄

𝒎 (𝑻) is the block diagonal matrix of

𝑷̄
𝒎
𝑖 (𝑻)′, and 𝑷̄

𝒎
𝑗 (𝑻)′, 𝑫̄ is the block diagonal matrix of 𝑫̄′

𝑖 and 𝑫̄
′
𝑗 .

Following Assumption 6 is a sufficient condition to identify 𝜷̄
𝒎 from conditional moment

(14) and Proposition 4 shows the IV estimand is identitifed correspondingly.

Assumption 6 (Identification II). There exists a matrix 𝑹̄(𝑻) ∈ R4×2 of functions of 𝑻 such

that 𝐸
[
𝑹̄(𝑻) 𝑷̄𝒎 (𝑻)

]
= 𝐸

[
𝜔𝒎 𝑹̄(𝑻)𝑫̄

]
is nonsingular.

Proposition 4. Suppose Assumptions 1-3, and 6 hold, and let 𝒎 = (𝒛, 𝒛′) ∈ M1 be a mono-

tone pair satisfying Pr(𝐷𝑖 (𝒛𝑖) = 𝐷 𝑗 (𝒛′𝑗 ) |𝑻) = 1. Then, the parameter is identified by 𝜷̄
𝒎
=

𝐸
[
𝜔𝒎 𝑹̄(𝑻)𝑫̄

]−1
𝐸

[
𝜔𝒎 𝑹̄(𝑻)𝒀

]
.

The personalized encouargement design with classical monotonicity is an example in that
Proposition 4 can be appliled.

Remark 2 (Personalized Encouargement with Classical Monotonicity). As demonstrated in
Table 3, under personalized encouragement (i.e, units do not interact in treatment take-up
decision), we have a monotone pair 𝒎 = ((1,1), (0,1)) ∈M1, where 𝐾𝒎

2 = 0 since 𝐷2(1,1) =
𝐷2(1,0). The same argument can apply to unit 1 for the monotone pair 𝒎 = ((1,1), (1,0)).
□

3.3.3 Identification without Assumption 3

Lastly, there are special situations where two out of three terms in (7) are cancelled out.
Consider a monotone pair 𝒎 = (𝒛, 𝒛′) ∈ M1 with 𝐷 𝑗 (𝒛 𝑗 ) = 𝐷 𝑗 (𝒛′𝑗 ) with probability 1. Then
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we have:

𝐾𝒎
𝑖 𝑗 = 𝐾

𝒎
𝑖 𝐷 𝑗 (𝒛 𝑗 ) = 𝐾𝒎

𝑖 𝐷 𝑗 (𝒛′𝑗 ). (15)

If unit 𝑗 is almost surely a 𝒎-never-taker, i.e., when 𝐷 𝑗 (𝒛 𝑗 ) = 𝐷 𝑗 (𝒛′𝑗 ) = 1 with probability 1,
then we have 𝐾𝒎

𝑗
= 𝐾𝒎

𝑖 𝑗
= 0 with probability 1 from (15). It follows that 𝑃𝒎

𝑗
= 𝑃𝒎

𝑖 𝑗
= 0. There-

fore, 𝛿𝒎
𝑖
(0) is a single unknown in (7), and directly recovered by the ratio of 𝐸 [𝐼𝑇𝑇𝑖 (𝑿)]

and 𝑃𝒎
𝑖

without Assumption 3. The opposite case occurs when unit 𝑗 is almost surely a 𝒎-
always-taker, and 𝐾𝒎

𝑗
= 𝐾𝒎

𝑖 𝑗
= 1. Proposition 5 summarizes the identification in these cases.

Proposition 5. Suppose Assumptions 1-2 hold, 𝑃𝒎
𝑖
> 0 for 𝑖 ∈ {1,2}, and let 𝒎 = (𝒛, 𝒛′) ∈M1

be a monotone pair.

(i) If 𝑗 is 𝒎-never-taker with probability 1, i.e., Pr(𝐷 𝑗 (𝒛 𝑗 ) =𝐷 𝑗 (𝒛′𝑗 ) = 0) = 1, then 𝛿𝒎
𝑖
(0) =

𝐸 [𝜔𝒎𝑌𝑖]/𝑃𝒎
𝑖

, and 𝜃𝒎
𝑗
(0) = 𝐸 [𝜔𝒎𝑌 𝑗 ]/𝑃𝒎

𝑖
.

(ii) If 𝑗 is 𝒎-always-taker with probability 1, i.e., Pr(𝐷 𝑗 (𝒛 𝑗 ) = 𝐷 𝑗 (𝒛′𝑗 ) = 1) = 1, then

𝛿𝒎
𝑖
(1) = 𝐸 [𝜔𝒎𝑌𝑖]/𝑃𝒎

𝑖
, and 𝜃𝒎

𝑗
(1) = 𝐸 [𝜔𝒎𝑌 𝑗 ]/𝑃𝒎

𝑖
.

This proposition generalizes the identification of LATEs under one-sided noncompliance
and LATE under SUTVA. The following two examples illustrate these situations.

Remark 3 (One-sided Noncompliance). As demonstrated in Table 2, the one-sided noncom-
pliance implies a monotone pair 𝒎1 = ((1,0), (0,0)) ∈ M1, where unit 2 is a 𝒎1-never-taker
with probability 1 (since 𝐷2(0,1) = 𝐷2(0,0) = 0 with probability 1). The same argument
can apply to unit 1 for the monotone pair 𝒎2 = ((0,1), (0,0)) ∈ M1. Therefore, assum-
ing one-sided noncompliance implies that one unit is almost surely an 𝒎-never-taker. Thus,
Proposition 4 generalizes the identification result proposed in Vazquez-Bare (2023b), and this
is a strict generalization since total monotonicity is not necessary. □

Remark 4 (Identification without Interactions). Suppose there is no interaction in treatment
take-up decision as shown in Remark 2. Then, for a monotone pair 𝒎 = ((1,1), (0,1)) ∈M1,
we have 𝐾𝒎

𝑗
= 0, and therefore the second term in (7) is zero. Additionally, if there is no

spillover in outcomes (i.e., 𝑌𝑖 (𝑑,1) = 𝑌𝑖 (𝑑,0) a.s.), then we have (i) Δ2𝑌𝑖 = 0; (ii) 𝛿𝒎
𝑖
(0) =

𝛿𝒎
𝑖
(1); (iii) 𝜃𝒎

𝑖
(0) = 𝜃𝒎

𝑖
(1) = 0. Therefore, (i) implies 𝜁𝒎

𝑖
= 0, thus the last term in (7) is

zero. (ii) and (iii) imply that Part (i) and (ii) of Proposition 5 are identical, and the resulting
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local direct effect reduces to the classical LATE estimand proposed in Imbens and Angrist
(1994). □

4 Estimation

In this section, I propose a two-stage procedure for estimating direct and indirect local aver-
age treatment effects discussed in previous sections. Let 𝑽𝑔 = (𝒀𝑔,𝒁𝑔,𝑫𝑔,𝑿𝑔) be observed
data for 𝑔 = 1, ...,𝐺. Conditional moment (10) derived from Lemma 2 and Assumption 4
imply an unconditional moment: 𝐸

[
𝜔𝒎𝑹(𝑻𝑔)

(
𝒀𝑔 − 𝑫̃𝑔𝜷

𝒎 ) ]
= 0.4,5

Suppose we have a monotone pair 𝒎 ∈M1, and I omit the 𝒎 superscript for simplicity in
this section. The optimal choice of 6×2 matrix 𝑹(·) of instruments for the efficient IV esti-
mator is 𝑹(𝑻𝑔) = −𝑷̃′(𝑻𝑔)𝑺−1(𝑻𝑔), where 𝑷̃(𝑻𝑔) = 𝐸 [𝜔𝑔 𝑫̃𝑔 |𝑻𝑔], 𝑆(𝑻𝑔) := 𝐸 [𝜔2

𝑔𝜺𝑔𝜺
′
𝑔 |𝑻𝑔],

and 𝜺𝑔 := 𝒀𝑔 − 𝑫̃𝑔𝜷.6 The efficient IV estimator is implemented via a two-stage procedure.
In the first-stage, the weight 𝜔𝑔 and the instrument 𝑹(𝑻𝑔) are estimated, and then 𝜷 is esti-
mated in the second stage using the estimated weight and instruments. I consider a parametric
first stage estimation. First, the propensity score is estimated using the following parametric
model with parameter 𝜸 ∈ Γ ⊂ R𝑘𝛾 , and a function 𝑞 : (𝒛,𝑿,𝜸) ↦→ (0,1]:

Pr(𝒁𝑔 = 𝒛 |𝑿𝑔;𝜸) = 𝑞(𝒛,𝑿𝑔,𝜸).

The weight 𝜔 corresponding to the parameter 𝛾 is defined as:

𝜔𝑔 (𝜸) =
1{𝒁𝑔 = 𝒛}
𝑞(𝒛,𝑿𝑔,𝜸)

−
1{𝒁𝑔 = 𝒛′}
𝑞(𝒛′,𝑿𝑔,𝜸)

.

Using a consistent estimator 𝜸̂ of 𝜸, and some feasible instrument 𝑹̃(𝑻𝑔), the first-stage IV

4The same argument can be used to derive estimator for the special cases in Proposition 3 and Proposi-
tion 4, by replacing 𝑫̃

𝒎 to 𝑫̌
𝒎

and 𝑫̄
𝒎, respectively. Estimator corresponding to Proposition 5 is proposed by

Vazquez-Bare (2023b).
5If there are multiple monotone pairs, then we can stack all conditional moment conditions and derive the

estimator similarly for efficiency gain.
6This choice of instruments is optimal in the sence that it minimizes the asymptotic variance (e.g., Hansen

(1985), Chamberlain (1987)).
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estimator of 𝜷 is given by:

𝜷̃ =


1
𝐺

𝐺∑︁
𝑔=1

𝜔𝑔 (𝜸̂) 𝑹̃(𝑻𝑔)𝑫̃𝑔


−1

1
𝐺

𝐺∑︁
𝑔=1

𝜔𝑔 (𝜸̂) 𝑹̃(𝑻𝑔)𝒀𝑔 .

Let 𝜺̃𝑔 :=𝒀𝑔− 𝑫̃𝑔 𝜷̃ be the first stage residual. The optimal matrix of instruments is estimated
by the parametric model 𝑹(𝑻𝑔,𝝓) :=−𝑷̃′(𝑻𝑔,𝝓)𝑺(𝑻𝑔,𝝓)−1 with the parameter 𝝓 ∈Φ ⊂ R𝑘𝜙 ,7

where 𝑺(𝑻𝑔,𝝓) := 𝐸 [𝜔𝑔 (𝜸̂)2𝜺̃𝑔𝜺̃
′
𝑔 |𝑻𝑔;𝝓] and 𝑷̃(𝑻𝑔,𝝓) := 𝐸 [𝜔𝑔 (𝜸̂)𝑫̃𝑔 |𝑻𝑔;𝝓] are parametric

models for the conditonal means. In the second-stage, the parameter 𝜷 is estimated by:

𝜷̂ =


1
𝐺

𝐺∑︁
𝑔=1

𝜔𝑔 (𝜸̂)𝑹(𝑻𝑔,𝝓)𝑫̃𝑔


−1

1
𝐺

𝐺∑︁
𝑔=1

𝜔𝑔 (𝜸̂)𝑹(𝑻𝑔,𝝓)𝒀𝑔 .

For the first-stage parameters, I assume they are estimated by asymptotically bounded as
stated in Assumption 7.

Assumption 7 (First-Stage). The first-stage parameter 𝜸 and 𝝓 are consistently estimated by

𝜸̂ and 𝝓. Specifically, 𝜸̂ satisfies

√
𝐺 (𝜸̂−𝜸0) =

1
√
𝐺

𝐺∑︁
𝑔=1

𝜓𝛾 (𝑽𝑔,𝜸0) + 𝑜𝑝 (1), 𝐸
[

𝜓𝛾 (𝑽𝑔,𝜸0)𝜓𝛾 (𝑽𝑔,𝜸0)′



] <∞,

with 𝐸 [𝜓𝛾 (𝑽𝑔,𝜸0)] = 0.

As noted by Wooldridge (2010), the first-stage estimation of instrument does not affect
the asymptotic variance of the second-stage estimation of 𝜷. However, the asymptotic vari-
ance need to be adjusted to account for the first-stage estimation error of Pr(𝒁𝑔 = 𝒛 |𝑿𝑔).
Assumption 8 in Appendix A.2 lists the required regularity conditions for consistency and
asymptotic normality of the estimator 𝜷̂, and Proposition 6 states the asymptotic properties
of the proposed estimator.

Proposition 6. Under Assumptions 1-4, 7, and regularity conditions (Assumption 8), the two-

7The parameter 𝝓 includes the parameters in the conditional expectations for optimal instrument as well as
first-stage estimators 𝜸̂, and 𝜷̃.
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stage estimator 𝜷̂ is a consistent estimator for 𝜷0, and

𝚺̂
−1/2√

𝐺 ( 𝜷̂− 𝜷0)
𝑑−→ 𝑁 (0,𝚺),

where 𝚺̂ = 1
𝐺

∑𝐺
𝑔=1 𝜓̂𝛽 (𝑽𝑔, 𝜷̂)𝜓̂𝛽 (𝑽𝑔, 𝜷̂)′, and

𝜓̂𝛽 (𝑽𝑔, 𝜷̂) = 𝑨̂
−1 [

𝜔𝑔 (𝜸̂)𝑹(𝑻𝑔,𝝓) (𝒀𝑔 − 𝑫̃𝑔 𝜷̂0) + 𝑩̂𝜓𝛾 (𝑽𝑔, 𝜸̂)
]
,

𝑨̂ =
1
𝐺

𝐺∑︁
𝑔=1

𝜔𝑔 (𝜸̂)𝑹(𝑻𝑔,𝝓)𝑫̃𝑔,

𝑩̂ =
1
𝐺

𝐺∑︁
𝑔=1

𝑹(𝑻𝑔,𝝓) (𝒀𝑔 − 𝑫̃𝑔 𝜷̂)
𝜕𝜔𝑔 (𝜸̂)
𝜕𝜸′ .

5 Simulation

This section examines the estimation procedure described in Section 4 using simulations.
Three distinct designs are established based on the restrictions on potential treatment dis-
cussed in Section 2.2.2, including total monotonicity, one-sided noncompliance, and person-
alized encouragement. Additionally, a design is considered where only weak one-sided non-
compliance (as discussed in Remark 1) holds, but none of the restrictions from the previous
three designs are satisfied.

5.1 Data Generating Process and Designs

First, exogenous variables 𝑋𝑖 = (𝑇𝑖,𝑊𝑖) are generated by uniform and standard normal distri-
butions, respectively: 𝑇𝑖 ∼ Uniform(0,1), and 𝑊𝑖 ∼ 𝑁 (0,1) for 𝑖 ∈ {1,2}. Treatment assign-
ments, take-ups, and outcomes are generated as follows.

28



5.1.1 Treatment Assignments, Take-up and Designs

Treatment assignment and potential treatments are generated by the following binary re-
sponse models:

𝑍𝑖 = 1{𝜂𝑖 ≤ 𝛾𝑖1 +𝑊𝑖𝛾𝑖2 +𝑊 𝑗𝛾𝑖3 +𝑇𝑖𝛾𝑖4 +𝑇𝑗𝛾𝑖5}, (16)

𝐷𝑖 (𝑧𝑖, 𝑧 𝑗 ) = 1{𝜈𝑖 ≤ 𝜙𝑖1(𝑧𝑖, 𝑧 𝑗 ) +𝜙𝑖2(𝑧𝑖, 𝑧 𝑗 )𝑊𝑖 +𝜙𝑖3(𝑧𝑖, 𝑧 𝑗 )𝑊 𝑗 +𝜙𝑖4(𝑧𝑖, 𝑧 𝑗 )𝑇𝑖}, (17)

where 𝜂𝑖 and 𝜈𝑖 are standard normal error terms. I set 𝛾𝑖0 = 1 and 𝛾𝑖2 = 𝛾𝑖3 = 𝛾𝑖4 = 𝛾𝑖5 = 0.1 for
both units 𝑖 = 1,2. Therefore, the treatment is randomly assigned conditional on both units’
exogenous characteristics 𝑿. Then, I consider four designs based on the values of 𝜙, which
determine the distribution of potential treatment and compliance types.

Design 1 represents a situation where total monotonicity holds. If 𝜙𝑖1(𝒛), 𝜙𝑖2(𝒛), and
𝜙𝑖3(𝒛) are fixed for all 𝒛 ∈ {0,1}2, then the ordering of potential treatments follows from the
ordering on 𝜙𝑖4(𝒛). Specifically, if 𝜙𝑖4(1,1) ≥ 𝜙𝑖4(1,0) ≥ 𝜙𝑖4(0,1) ≥ 𝜙𝑖4(0,0) for both units,
then the DGP satisfies total monotonicity. Compliance types in this case are summarized in
Table 2, and they are classified by the realization of 𝜈1, as illustrated in Figure 3.

Figure 3: Five Compliacne Types under Total Monotonicity

𝜈𝑖

𝜙𝑖4(0,0)𝑇𝑖 𝜙𝑖4(0,1)𝑇𝑖 𝜙𝑖4(1,0)𝑇𝑖 𝜙𝑖4(1,1)𝑇𝑖

︷       ︸︸       ︷Always
taker ︷               ︸︸               ︷Social

complier ︷               ︸︸               ︷Complier ︷               ︸︸               ︷Group
complier ︷     ︸︸     ︷Never

taker

Design 2 represents a situation where both total monotonicity and one-sided noncompli-
ance (OSN) hold. OSN is implemented by setting both 𝐷𝑖 (0,1) = 𝐷𝑖 (0,0) = 0 with probabil-
ity 1. This is numerically implemented by setting the constant term 𝜙𝑖1(𝒛) to a large negative
number for all 𝒛 ∈ {0,1}2.

Design 3 represents a situation under personalized encouragement (𝐷𝑖 (𝑑,1) = 𝐷𝑖 (𝑑,0)
for 𝑑 ∈ {0,1}) with classical monotonicity (𝐷𝑖 (1, ·) ≥ 𝐷𝑖 (0, ·)). Personalized encouragement
is implemented by 𝜙𝑖𝑘 (𝑧𝑖,0) = 𝜙𝑖𝑘 (𝑧𝑖,1) for all 𝑘 , for the potential treatment not depend on the
other’s treatment assignment. Classical monotonicity is implied by setting 𝜙𝑖4(1, ·) ≥ 𝜙𝑖4(0, ·)
for both units 𝑖 = 1,2.
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Table 4: Coefficients for Designs

Unit 1 Unit 2

Design (𝑧𝑖, 𝑧 𝑗 ) 𝜙11 𝜙12 𝜙13 𝜙14 𝜙21 𝜙22 𝜙23 𝜙24

1 (TM) (1,1) -1 0.1 0.1 7 -1.5 0.2 0.2 8
(1,0) -1 0.1 0.1 4 -1.5 0.2 0.2 4
(0,1) -1 0.1 0.1 1 -1.5 0.2 0.2 2
(0,0) -1 0.1 0.1 0 -1.5 0.2 0.2 0

2 (TM+OSN) (1,1) -1 0.1 0.1 7 -1.5 0.2 0.2 8
(1,0) -1 0.1 0.1 4 -1.5 0.2 0.2 4
(0,1) -1000 0.1 0.1 1 -1000 0.2 0.2 2
(0,0) -1000 0.1 0.1 0 -1000 0.2 0.2 0

3 (PE+CM) (1,1) -1 0.1 0.1 7 -1.5 0.2 0.2 8
(1,0) -1 0.1 0.1 7 -1.5 0.2 0.2 8
(0,1) -1 0.1 0.1 1 -1.5 0.2 0.2 2
(0,0) -1 0.1 0.1 1 -1.5 0.2 0.2 2

4 (WOSN) (1,1) -1 0.2 0.1 7 -1.5 0.4 0.2 8
(1,0) -1 0.1 0.2 4 -1.5 0.2 0.4 4
(0,1) -1 0.2 0.2 1 -1.5 0.4 0.4 2
(0,0) -1000 0.1 0.1 0 -1000 0.2 0.2 0

Notes: Potential treatment is generated by (17). Design 1 satisfies total monotonicity (TM). Design
2 satisfies total monotonicity (TM) and one-sided noncompliance (OSN). Design 3 satisfies person-
alized encouragement (PE) and the classical monotonicity (CM). Design 4 satisfies weak one-sided
noncompliance (WOSN).

Design 4 represents a situation where neither total monotonicity, one-sided noncompli-
ance, nor personalized encouragement are satisfied. In this design, 𝜙𝑖𝑘 (𝒛) for 𝑘 = 1,2,3
are neither fixed nor satisfy certain monotonicity. Thus, the almost sure ordering of po-
tential treatments is not guaranteed. Here, 𝐷𝑖 (0,1) can be 1 with positive probability, and
hence one-sided noncompliance does not hold. The only restriction on potential treatments
is 𝐷𝑖 (0,0) = 𝐷 𝑗 (0,0) = 0 with probability 1. Consequently, this design represents weak
one-sided noncompliance.

Table 4 shows the coefficient values for each design. All four designs have two common
monotone pairs 𝒎1 = ((1,0), (0,0)) and 𝒎2 = ((0,1), (0,0)) in M1. In the simulations, I
focus on the monotone pair 𝒎1 only. Figure 4 describes the distribution of 𝒎1-compliers as
function of 𝑇𝑖 for each design.
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Figure 4: Distributions of 𝒎1-compliers

Notes: Each plot describes 𝑃𝑖 := Pr(𝐾𝒎1
𝑖

= 1|𝑇𝑖) = Pr(𝐷𝑖 (𝒛𝑖) > 𝐷𝑖 (𝒛′𝑖) |𝑇𝑖), where 𝒎1 = ((1,0), (0,0))
(i.e., 𝒛1 = (1,0), 𝒛2 = (0,1), 𝒛′1 = 𝒛′2 = (0,0)). For design 2 and 3, 𝐷2(0,1) = 𝐷2(0,0) with probability
1. Hence, 𝑃2 = Pr(𝐾𝒎1

2 = 1|𝑻𝑖) = 0.

5.1.2 Outcomes

To consider the heterogeneity of potential outcomes in different compliance types, with re-
spect to the 𝒎1-monotone pair, the potential outcome is generated by 𝑌𝑖 (𝑑𝑖, 𝑑 𝑗 ) = 𝑌𝐷𝑖 (𝑑𝑖) +
𝑌 𝐼
𝑖
(𝑑 𝑗 ) +𝑊𝑖 + 0.5𝑊 𝑗 , where 𝑌 𝑝

𝑖
(𝑑) |𝐾𝒎1

𝑖
∼ 𝑁 (𝐾𝒎1

𝑖
𝑌
𝑝

𝑖
(𝑑),1), for 𝑝 ∈ {𝐷, 𝐼}, 𝑖 ∈ {1,2}, and

𝑑 ∈ {0,1}. This data-generating process implies that the potential outcome is additively sep-
arable with respect to the potential treatment statuses of two units. This additive separability
guarantees that Δ𝑖𝑌𝑖 (1) = Δ𝑖𝑌𝑖 (0), or, Δ2𝑌𝑖 = 0. Hence, the direct and indirect effects do not
depend on the other unit’s treatment take-up status, and the coefficient 𝜁𝒎

𝑖
in the last term in
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(7) and (8) is zero.8

For designs 1 and 4, the estimator based on the conditional moment (10) is used to esti-
mate 𝛿𝒎1

𝑖
(0), 𝜃𝒎1

𝑖
(0) for 𝑖 ∈ {1,2}. For design 2, unit 2 is 𝒎1-never-taker with probability 1,

i.e., 𝐷2(𝒛2) = 𝐷2(𝒛′2) = 0. Therefore, 𝛿𝒎1
1 (0) and 𝜃𝒎1

2 (0) are identitifed by Proposition 5. For
design 3, 𝐷2(𝒛2) = 𝐷2(𝒛′2), and therefore 𝛿𝒎1

1 (0) and 𝜃𝒎1
2 (0) are identitifed by Proposition 4.

Thus, for designs 2 and 3, I estimate those identified parameters using the same estimation
procedure, applying the moment conditions (14), (13), respectively.

5.2 Simulation Results

Table 5 presents the simulation results for Design 4. See Tables B.1-B.3 in the Appendix B.1
for the results of Designs 1-3. The first two columns use true propensity scores (correspond-
ing to the true 𝛾s), while the last two columns estimate propensity scores in the first stage.
“Probit” and “Linear” refer to estimating the optimal instrument (𝑃𝒎1

𝑖
(𝑻)) using the probit

model and linear probability model, respectively.

Design 4 is a case where neither total monotonicity nor one-sided noncompliance hold.
In this case, the mean squared error (MSE) of the estimators decreases in proportion to 𝐺−1

for all four methods, which verifies consistency as stated in Proposition 6. Looking at the
coverage rate, inference based on plug-in standard error appears valid. It is more efficiently
estimated when propensity scores are estimated rather than using actual propensity scores,
as the MSE is smaller in the last two columns compared to the first two. This aligns with
previous findings in the literature (e.g., Hahn (1998), Hirano, Imbens, and Ridder (2003)).
Since the estimation of the instrument does not affect the limiting distribution, there is no sig-
nificant difference between the results using probit and linear models for estimating 𝑃𝒎

𝑖
(𝑻).

However, as the linear model appears slightly more efficient, I report the results of the estima-
tor with first-stage propensity score estimation and a linear probability model for estimating
instruments in all subsequent simulation analyses.

Table 6 provides more detailed information, including the mean, median, MSE, and cov-
erage rate for each parameter in Design 4. It shows that both the mean and median converge
to the actual values, and coverage rate converges to the correct size. See Tables B.4-B.5 in

8This restriction is not necessary to simulate the estimation procedure. See (Table B.7) in the Appendix B.2
for the result from a design that does not satisfy additive separability of outcomes.
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Table 5: Simulation of Design 4

Use true 𝜔 Estimate 𝜔

𝐺 Linear Probit Linear Probit

MSE 200 6439.37 320433.95 5123.69 39365.94
400 1034.09 1424.85 729.9 813.82
500 776.92 862.87 563.95 609.16
800 434.99 450.69 318.93 343.06

1,000 359.97 365.36 260.69 260.47

MAE 200 68.75 110.27 61.47 76.27
400 44.87 47.77 37.84 39.02
500 39.43 41.09 33.58 34.42
800 30.29 30.68 25.82 26.05

1,000 27.55 27.57 23.41 23.31

Coverage 200 0.95 0.91 0.94 0.91
400 0.94 0.92 0.94 0.92
500 0.95 0.93 0.95 0.93
800 0.95 0.94 0.95 0.94

1,000 0.95 0.94 0.95 0.94

Notes: This table presents simulation results for 𝐵 = 10,000 replications. Column 𝐺 denotes the
number of independent groups. The mean squared error (MSE) is calculated by

∑𝐵
𝑏=1∥𝛽𝑏− 𝛽0∥2/𝐵,

where 𝛽𝑏 = (𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ is the vector of estimates in the 𝑏th replication, and 𝛽0 =

(𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ is the true vector of parameters. The actual parameter values are set as
𝛿1(0) = 20, 𝜃1(0) = 10, 𝛿2(0) = 30, and 𝜃2(0) = 15. The mean absolute error (MAE) is calculated
by

∑𝐵
𝑏=1

∑4
𝑘=1 |𝛽𝑘𝑏 − 𝛽0𝑘 |/(4𝐵). Coverage computes the minimum 95% coverage rate among the

four estimates, i.e., min1≤𝑘≤4
∑𝐵

𝑏=11{𝛽𝑘𝑏 −1.96𝑆𝐸 (𝛽𝑘𝑏) ≤ 𝛽0𝑘 ≤ 𝛽𝑘𝑏 +1.96𝑆𝐸 (𝛽𝑘𝑏)}/𝐵. The first
two columns (“Use true 𝜔”) use the true propensity score Pr(𝒁𝑖 = 𝒛 |𝑿) for the weight 𝜔, while the
last two columns (“Estimate 𝜔”) estimate the propensity score and hence 𝜔. “Linear” and “Probit”
denote that the optimal instrument 𝑃𝒎1

𝑖
(𝑻) is estimated by the linear probability model and probit

model, respectively.

the Appendix B.1 for the same results of Designs 1-3.

Table 7 compares MSE, mean absolute errror (MAE), and coverage rates of all four de-
signs. It illustrates that the proposed estimators perform well under all four designs based on
various restrictions on potential treatment as the MSEs decrease in proportion to 𝐺−1, and
the coverage rates seem to converge to 95%.

For Design 3, the parameters are identified by Proposition 4. However, since the coeffi-
cient 𝜁𝑖 of the interaction term is zero by construction, the parameters in Design 3 can also be
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Table 6: Simulation of Design 4 for Each Parameter

Design 4

𝐺 𝛿1(0) 𝜃1(0) 𝛿2(0) 𝜃2(0)
Mean 200 19.8 9.82 29 14.99

400 19.73 10.46 30.08 14.84
500 19.87 10.05 29.79 14.94
800 19.92 9.91 29.81 14.92

1,000 19.95 9.99 29.71 15.05

Median 200 20.19 11.19 33.94 14.52
400 19.93 10.84 32.28 14.55
500 20.12 10.39 31.36 14.79
800 20.05 10.11 30.79 14.85

1,000 20.05 10.29 30.74 14.89

MSE 200 249.59 1220.86 3069.35 583.89
400 49.16 200.53 398.22 81.99
500 38.37 156.22 306.9 62.46
800 21.9 86.9 173.52 36.61

1,000 17.44 71.56 142.63 29.07

Coverage 200 0.97 0.98 0.94 0.98
400 0.97 0.97 0.94 0.97
500 0.96 0.97 0.95 0.97
800 0.96 0.96 0.95 0.96

1,000 0.96 0.96 0.95 0.96

Notes: This table presents simulation results for 𝐵 = 10,000 replications. Column 𝐺 denotes the
number of groups. Mean is

∑𝐵
𝑏=1 𝛽𝑏/𝐵, where 𝛽𝑏 = (𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ is the vector of esti-

mates in 𝑏th replication, and 𝛽0 = (𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ = (20,10,30,15)′ is the true values of
parameters. Med is the median of 𝛽𝑏 among 𝐵 simulated estimates. The mean squared error (MSE)
is calculated by

∑𝐵
𝑏=1∥𝛽𝑏 − 𝛽0∥2/𝐵. Coverage computes the minimum 95% coverage rate among

the four estimates, i.e., min1≤𝑘≤4
∑𝐵

𝑏=11{𝛽𝑘𝑏 −1.96𝑆𝐸 (𝛽𝑘𝑏) ≤ 𝛽0𝑘 ≤ 𝛽𝑘𝑏 +1.96𝑆𝐸 (𝛽𝑘𝑏)}/𝐵.

identified using the ratio of the ITT effect and the distribution of compliance types, similar to
those in Design 2, which is identified by Proposition 5. In these cases, for the monotone pair
𝒎1, the direct effects for unit 1 and indirect effects for unit 2 can also be estimated using the
IV estimator proposed by Vazquez-Bare (2023b).

Table 8 compares the mean absolute biases (MAE) of two estimators. The estimator de-
noted by R is the estimator proposed in Section 4. The estimator denoted by V is the estimator
proposed by Vazquez-Bare (2023b), which is equivalent to the IV estimator for the estimands
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Table 7: Simulation of Designs 1-4

𝐺 Design 1 Design 2 Design 3 Design 4

MSE 200 3094.09 31.01 105.09 5123.69
400 741.76 14.18 46.45 729.9
500 679.73 11.34 38.01 563.95
800 288.04 6.97 22.48 318.93

1,000 225.69 5.52 17.49 260.69

MAE 200 58.62 6.17 11.02 61.47
400 37.05 4.18 7.47 37.84
500 32.31 3.74 6.79 33.58
800 24.53 2.94 5.26 25.82

1,000 21.95 2.61 4.65 23.41

Coverage 200 0.97 0.93 0.95 0.94
400 0.97 0.94 0.95 0.94
500 0.96 0.94 0.95 0.95
800 0.96 0.94 0.95 0.95

1,000 0.96 0.94 0.95 0.95

Notes: This table presents simulation results for 𝐵 = 10,000 replications. Column 𝐺 denotes the
number of independent groups. The mean squared error (MSE) is calculated by

∑𝐵
𝑏=1∥𝛽𝑏− 𝛽0∥2/𝐵,

where 𝛽𝑏 = (𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ is the vector of estimates in the 𝑏th replication, and 𝛽0 =

(𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ is the true vector of parameters. The actual parameter values are set as
𝛿1(0) = 20, 𝜃1(0) = 10, 𝛿2(0) = 30, and 𝜃2(0) = 15. The mean absolute error (MAE) is calculated
by

∑𝐵
𝑏=1

∑4
𝑘=1 |𝛽𝑘𝑏 − 𝛽0𝑘 |/(4𝐵). Coverage computes the minimum 95% coverage rate among the

four estimates, i.e., min1≤𝑘≤4
∑𝐵

𝑏=11{𝛽𝑘𝑏 − 1.96𝑆𝐸 (𝛽𝑘𝑏) ≤ 𝛽0𝑘 ≤ 𝛽𝑘𝑏 + 1.96𝑆𝐸 (𝛽𝑘𝑏)}/𝐵. For all
designs, the propensity score and the weight 𝜔 is estimated by probit model, and the optimal instru-
ment 𝑃𝒎1

𝑖
is estimated by linear probability model.

in Proposition 5. It is noteworthy that for Designs 1 and 4, where total monotonicity or one-
sided noncompliance is violated, the V estimator is no longer valid. Indeed, the results for
designs 1 and 4 reveal the bias of the V estimator. In Design 1, the bias arises from the vi-
olation of one-sided noncompliance, while in Design 4, it reflects bias from the violation of
both total monotonicity and one-sided noncompliance. For Designs 2 and 3, both estimators
R and V behave quite similarly, and the biases seem to converge to zero.
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Table 8: Simulation of Designs and Bias When (TM) and (OSN) Are Violated

Design 1 Design 4 Design 2 Design 3

𝐺 𝛿1(0) 𝜃2(0) 𝛿1(0) 𝜃2(0) 𝛿1(0) 𝜃2(0) 𝛿1(0) 𝜃2(0)
R 200 0.44 0.04 0.2 0.01 0.24 0.19 0.7 0.53

400 0.13 0.04 0.27 0.16 0.12 0.09 0.25 0.19
500 0.17 0.07 0.13 0.06 0.1 0.08 0.13 0.1
800 0.03 0.04 0.08 0.08 0.07 0.05 0.09 0.07

1,000 0.11 0.12 0.05 0.05 0.04 0.03 0.11 0.08
2,000 0.07 0.04 0 0.04 0.04 0.03 0.05 0.04
5,000 0 0.02 0.01 0 0.02 0.02 0 0

V 200 4.63 13.97 4.47 14.07 0.42 0.31 0.61 0.45
400 4.67 13.94 4.7 14.32 0.18 0.14 0.28 0.21
500 4.68 14.04 4.71 14.4 0.15 0.11 0.27 0.2
800 4.7 14.05 4.69 14.32 0.08 0.06 0.14 0.1

1,000 4.57 13.82 4.75 14.38 0.07 0.05 0.07 0.05
2,000 4.64 13.98 4.78 14.39 0.02 0.01 0.03 0.02
5,000 4.66 13.98 4.79 14.39 0 0 0.04 0.03

Notes: This table presents simulation results for 𝐵 = 10,000 replications. Column 𝐺 denotes the
number of groups. Each column shows mean absolute bias that is computed by 1

𝐵

∑𝐵
𝑏=1 |𝛽𝑘𝑏 − 𝛽0𝑘 |

for each parameters. R denotes the proposed estimator using the additional exclusion restriction
𝑻. V denotes the IV estimator proposed by Vazquez-Bare (2023b), with inverse propensity score
weighting to account for the conditioning covariates. To compare estimates for the two estimators,
only direct effects for unit 1 (𝛿1(0)) and indirect effects for unit 2 (𝜃2(0)) are reported. The actual
parameter values are 𝛿1(0) = 20 and 𝜃2(0) = 15. Designs 2 and 3 satisfy both total monotonicity
(TM) and one-sided noncompliance (OSN). Design 1 only satisfies (TM). Neither condition is sat-
isfied in Design 4.

6 Empirical Illustration

In this section, I apply the proposed estimation method to data from the study conducted by
Dupas, Keats, and Robinson (2017) and Dupas, Keats, and Robinson (2019). The dataset
involves a randomized experiment carried out in the rural areas of Kenya’s Busia District
in the Western Province from 2009 to 2012. In the sampled areas, banking services are
limited because banks are primarily located in major towns, and opening a savings account
incurs some costs. As a result, most people did not have savings accounts at the beginning
of the experiment and typically kept their cash at home. The experiment aimed to assess the
impact of providing a savings account on economic behaviors. The main findings in Dupas,
Keats, and Robinson (2019) indicate that access to savings accounts reduces households’
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dependence on others in their financial network. The sample consists of 885 households,
including 399 female-headed and 486 dual-headed households. In this section, only dual-
headed households are analyzed to consider the interactions between spouses.

Let individuals 1 and 2 denote the female and male household heads, respectively. The
experiment randomly distributed non-transferable vouchers for opening free savings accounts
to individuals based on their region (around three market centers) and occupation. The treat-
ment assignment (𝒁) is defined as 1 if the individual received the voucher, and 0 if they
did not. The first round of the experiment began in 2010, and vouchers were offered after
this round. However, because most individuals had not yet opened an account by round 2, I
consider rounds 3-6 as post-treatment periods. Treatment take-up (𝑫) is defined as 1 if the
individual opens a savings account by redeeming the voucher, and 0 if they do not. Thus, by
the construction of the treatment take-up, this experiment satisfies weak one-sided noncom-
pliance, as if both spouses do not have the voucher, then neither can open the account.

Table 9: Treatment Assignments and Take-up

Take-up

Female Male # of HH Both Female only Male only None

Treatment Treatment 150 (33.6%) 78 19 26 27
Treatment Control 117 (26.2%) 9 68 0 40

Control Treatment 104 (23.3%) 3 0 68 33
Control Control 76 (17%) 0 0 0 76

Total 447 90 87 94 176

Notes: First two columns show the treatment assignment statuses of both individuals. Out of the
486 dual-headed households, one household is excluded due to non-response in the first round.
Consequently, the total number of households with both individuals treated is 161, only the female
treated is 126, only the male treated is 116, and neither treated is 82.

Table 9 summarizes the number of households in different treatment assignments and
their treatment take-up statuses. The treatment was randomized at the individual level, and
among 447 households available at round 3, 76 (17%) received no vouchers, 150 (33.6%)
received vouchers for both individuals, 117 (26.2%) received vouchers for females only, and
104 (23.3%) received vouchers for males only. Individuals who received the voucher could
open an account for free. They also had the option to open a joint account with their spouse.
Thus, one-sided noncompliance was not satisfied in this experiment. For instance, an indi-
vidual without a voucher could open an account if their spouse had the voucher and wanted
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to open the account jointly. In total, 521 individuals received the voucher, and the redemption
rate for the vouchers was 69.3%. Among households where only one individual was treated,
5.4% opened joint accounts.

The weak one-sided noncompliance in this experiments implies two monotone pairs:
𝒎1 = ((1,0), (0,0)) and 𝒎2 = ((0,1), (0,0)) in M1.9 Similar to the classification of com-
pliance types in Table 2, I define each individual as a complier if 𝐷𝑖 (1,0) ≥ 𝐷𝑖 (0,0) with
probability 1, and a social complier if 𝐷𝑖 (0,1) ≥ 𝐷𝑖 (0,0) with probability 1. Therefore, if
the female is an 𝒎1-complier, she is a complier; if the male is an 𝒎1-complier, he is a social
complier. Thus, the 𝒎1-direct effect for the female represents the direct local average treat-
ment effect when she is a complier, and the 𝒎1-indirect effect represents the indirect local
average effect when her spouse is a social complier. A similar interpretation applies to 𝒎2.
Table 10 shows the estimated distribution of being each 𝒎-compliance type.

Table 10: Distribution of Compliance Types

𝒎1 𝒎2

Complier Never-Taker Complier Never-Taker

Female 0.59 0.41 0.03 0.97
Male 0.05 0.95 0.68 0.32

Notes: This table shows the probability of unit 𝑖 being an 𝒎-complier and an 𝒎-never taker. For
each monotone pair, there is no 𝒎-always-taker because 𝐷1(0,0) = 𝐷2(0,0) = 0 with probability 1
in this experiment. Therefore, the probability of being a 𝒎-complier is 𝑃𝑖 := Pr(𝐾𝒎

𝑖
= 1), and that

of being a never-taker is 1−𝑃𝑖 .

For individual-level outcomes, Dupas, Keats, and Robinson (2019) find that providing
the vouchers has a significant positive intention-to-treat effect on making deposits and with-
drawals. Hence, I use these two extensive margin responses as outcome variables in this
application. The authors also pointed out that the values of animals and durable goods sig-
nificantly determine treatment take-up, based on regression analysis.

Table 11 replicates the regressions for treatment take-up and individual-level outcomes. It
also shows that the values of animals and durable goods (‘value’) are significant determinants
of opening a savings account. Additionally, I find that participation in a qualitative survey
(‘sqs𝑖’), conducted after round 1, and the housing index (‘h-index’), which indicates if the

9As noted in Remark 1, since 𝐷 (0,0) = 0, the experiment implies 𝐷 (1,0) ≥ 𝐷 (0,0) and 𝐷 (0,1) ≥ 𝐷 (0,0)
for both individuals with probability 1.
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walls are cement or the roofs are iron or the floors are cement, also determine treatment
take-up but do not affect the outcomes of interest. These variables are used as exclusion
restrictions for treatment take-up, and hence for the distribution of 𝒎-compliers.

Table 11: Determinants of Treatment Take-up

Variable 𝐷1 𝐷2 𝐷1𝐷2 Deposit1 Deposit2 Withdrawal1 Withdrawal2

sqs1
-0.045
(0.03)

0.076∗

(0.032)
0.024

(0.025)
-0.002
(0.016)

0.01
(0.019)

-0.003
(0.007)

-0.004
(0.012)

sqs2
0.038
(0.03)

0.147∗∗∗

(0.031)
0.058∗

(0.025)
-0.008
(0.016)

0.011
(0.018)

0.011
(0.007)

0.009
(0.012)

sqs1×sqs2
0.099∗

(0.043)
-0.244∗∗∗

(0.044)
-0.037
(0.035)

0.023
(0.023)

-0.002
(0.026)

-0.004
(0.009)

0.001
(0.017)

h-index
-0.245∗∗∗

(0.044)
-0.106∗

(0.045)
-0.14∗∗∗

(0.036)
0.009

(0.024)
0.049

(0.027)
-0.01
(0.01)

0.022
(0.017)

value
0.031∗∗

(0.012)
0.034∗∗

(0.012)
0.032∗∗∗

(0.01)
0.008

(0.006)
0.006

(0.007)
0.002

(0.003)
0.005

(0.005)

N 1,885 1,885 1,885 1,885 1,885 1,885 1,885

Notes: Control variables include age, education, region, indicators of membership in ROSCA, indi-
cators of using mobile money, household size, and round-fixed effects for both the female and male
heads. Additionally, the dependent variable at the baseline period is controlled for in the last four
columns to replicate the specification used in Dupas, Keats, and Robinson (2019). sqs is the indica-
tor of participation in the qualitative survey conducted after round 1. h-index indicates the type of
residence. value represents the value of animals and durable goods. Standard errors are reported in
parentheses. ∗,∗∗ ,∗∗∗ denote the significance levels at 10%, 5%, and 1%, respectively.

Table 12 and Table 13 present the estimation of direct and indirect local average treatment
effects corresponding to each monotone pair, 𝒎1 and 𝒎2. The columns labeled ”V” use the
V estimator, which is the IV estimator corresponding to the identification in Proposition 4.
For the monotone pair 𝒎1, the direct effect for unit 1 and the indirect effect for unit 2 are
estimable, while it is the opposite for the monotone pair 𝒎2. The column labeled ”R” uses
the IV estimator proposed in Section 4 using additional exclusion restrictions as listed above.
Age, education, market center, and mobile money usage for both males and females are used
as control variables.

The identification in Proposition 4 is valid under a one-sided noncompliance situation.
Therefore, the V estimation would be biased as one-sided noncompliance does not hold in
the experiment. However, as only about 5% opened the joint account, the extent of the
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Table 12: Make Deposit

𝒎1 𝒎2

Unit Effects R V R V

Female Direct
0.11∗∗

(0.05)
0.08∗∗

(0.03)
-0.25
(0.22)

Indirect
-0.35
(0.36)

0.03
(0.03)

-0.002
(0.03)

Male Direct
0.43
(0.4)

0.12∗∗∗

(0.05)
0.1∗∗∗

(0.04)

Indirect
-0.06
(0.05)

0.001
(0.03)

-0.06
(0.53)

Notes: The dependent variable is 1 if the individual made at least one deposit. “Direct” denotes the
local average treatment effects 𝐸 [𝑌𝑖 (1,0) −𝑌𝑖 (0,0) |𝐾𝒎

𝑖
= 1], and “Indirect” denotes 𝐸 [𝑌𝑖 (0,1) −

𝑌𝑖 (0,0) |𝐾𝒎
𝑗
= 1]. Plug-in clustered standard errors are reported in parentheses. ∗,∗∗ ,∗∗∗ denote the

significance levels at 10%, 5%, and 1%, respectively.

Table 13: Make Withdrawal

𝒎1 𝒎2

Unit Effects R V R V

Female Direct
0.06∗∗

(0.03)
0.04∗∗∗

(0.02)
0.28

(0.23)

Indirect
-0.17
(0.24)

-0.005
(0.004)

0.01
(0.01)

Male Direct
0.16

(0.34)
0.06∗∗

(0.03)
0.05∗

(0.03)

Indirect
0.001
(0.04)

0.01
(0.03)

-0.44
(0.65)

Notes: The dependent variable is 1 if the individual made at least one withdrawal. “Direct” denotes
the local average treatment effects 𝐸 [𝑌𝑖 (1,0) −𝑌𝑖 (0,0) |𝐾𝒎

𝑖
= 1], and “Indirect” denotes 𝐸 [𝑌𝑖 (0,1) −

𝑌𝑖 (0,0) |𝐾𝒎
𝑗
= 1]. Plug-in clustered standard errors are reported in parentheses. ∗,∗∗ ,∗∗∗ denote the

significance levels at 10%, 5%, and 1%, respectively.

violation of one-sided noncompliance is small. This results in both estimations being similar
in Table 12 and Table 13 for estimable parameters. The instrument is estimated by linear
probability model.10

By using two monotone pairs 𝒎1 and 𝒎2, we can infer that the outcomes for both female

10See Table B.8 and Table B.9 in Appendix B.3 for the probit first stage.
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and male heads primarily stem from direct effects. From the R-estimation, the effects are
about an 11% increase for making deposits and a 6% increase for making withdrawals. These
effects are smaller in the V estimation for the estimable parameters, which can be interpreted
as bias resulting from the violation of one-sided noncompliance. According to both estimates,
the indirect effects are not significantly estimated. This indicates that there is no evidence that
an individual’s banking behaviors are affected by their spouse’s opening of a savings account.

7 Conclusion

This study analyzes the identification and estimation of causal effects in situations where
units interact with imperfect compliance. Traditionally, such scenarios require restrictions
on the distribution of potential treatments, often through monotonicity assumptions or one-
sided noncompliance. This study relaxes these restrictions, introducing a general concept of
monotonicity and providing a unified framework to analyze endogenous treatments in this
context. The study proposes the identification of causal effects (local average direct and
indirect effects) under weak monotonicity and an additional exclusion restriction for endoge-
nous treatment, without relying on (total) monotonicity or one-sided noncompliance. The
results also explain previous findings in the literature as special cases. A two-stage estima-
tion procedure is proposed and its performance is verified using Monte Carlo simulations
and an experimental dataset from Dupas, Keats, and Robinson (2017) and Dupas, Keats, and
Robinson (2019).

This paper focuses on scenarios where interactions occur between two units within all
groups. This is relevant for contexts such as married couples or pair trading in finance.
However, this assumption may be too restrictive in cases where units do not interact in some
groups. Furthermore, the analysis is limited to interactions between two units. Applying this
framework to accommodate a general 𝑁 units will not be straightforward and will require
additional restrictions. Extending this approach to accommodate more complex scenarios
will be a valuable direction for future research.
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Appendix

A Proofs

A.1 Proofs for Section 3

Proof of Lemma 1. Let 𝑖 ∈ {1,2} be given, and 𝑗 = 3− 𝑖. From (3), we have

𝑌𝑖 = 𝑌𝑖 (0,0) +Δ𝑖𝑌𝑖 (0)𝐷𝑖 +Δ 𝑗𝑌𝑖 (0)𝐷 𝑗 +Δ2𝑌𝑖𝐷𝑖𝐷 𝑗 .

Let 𝒎 = (𝒛, 𝒛′, 𝒓) = ((𝑧1, 𝑧2), (𝑧′1, 𝑧
′
2), (𝑟1, 𝑟2)) be a monotone pair, and denote 𝒛𝑖 = (𝑧𝑖 , 𝑧 𝑗). Then,

we have

𝐸 [𝑌𝑖 |𝒁𝑖 = 𝒛𝑖 ,𝑿] = 𝐸 [𝑌𝑖 (0,0) |𝒁𝑖 = 𝒛𝑖 ,𝑿]

+𝐸 [Δ𝑖𝑌𝑖 (0)𝐷𝑖 |𝒁𝑖 = 𝒛𝑖 ,𝑿] +𝐸 [Δ 𝑗𝑌𝑖 (0)𝐷 𝑗 |𝒁 𝑗 = 𝒛 𝑗 ,𝑿]

+𝐸
[
Δ2𝑌𝑖𝐷𝑖𝐷 𝑗 |𝒁𝑖 = 𝒛𝑖 ,𝑿

]
= 𝐸 [𝑌𝑖 (0,0) |𝑿]

+𝐸 [Δ𝑖𝑌𝑖 (0)𝐷𝑖 (𝒛𝑖) |𝑿] +𝐸 [Δ 𝑗𝑌𝑖 (0)𝐷 𝑗 (𝒛 𝑗) |𝑿]

+𝐸
[
Δ2𝑌𝑖𝐷𝑖 (𝒛𝑖)𝐷 𝑗 (𝒛 𝑗) |𝑿

]
,

By Assumption 1-(B) Note that 𝑟2
𝑖
= 1 because 𝑟𝑖 ∈ {−1,1}. Therefore,

𝐸 [𝑌𝑖 |𝒁𝑖 = 𝒛𝑖 ,𝑿] −𝐸 [𝑌𝑖 |𝒁𝑖 = 𝒛′𝑖 ,𝑿]

= 𝐸 [Δ𝑖𝑌𝑖 (0) (𝐷𝑖 (𝒛𝑖) −𝐷𝑖 (𝒛′𝑖)) |𝑿] +𝐸 [Δ 𝑗𝑌𝑖 (0) (𝐷 𝑗 (𝒛 𝑗) −𝐷 𝑗 (𝒛′𝑗)) |𝑿]

+𝐸
[
Δ2𝑌𝑖 (𝐷𝑖 (𝒛𝑖)𝐷 𝑗 (𝒛 𝑗) −𝐷𝑖 (𝒛′𝑖)𝐷 𝑗 (𝒛′𝑗)) |𝑿

]
.

= 𝑟𝑖𝐸 [Δ𝑖𝑌𝑖 (0)𝑟𝑖 (𝐷𝑖 (𝒛𝑖) −𝐷𝑖 (𝒛′𝑖)) |𝑿] + 𝑟 𝑗𝐸 [Δ 𝑗𝑌𝑖 (0)𝑟 𝑗 (𝐷 𝑗 (𝒛 𝑗) −𝐷 𝑗 (𝒛′𝑗)) |𝑿]

+ 𝑟𝑖𝑟 𝑗𝐸
[
Δ2𝑌𝑖 (𝑟𝑖𝐷𝑖 (𝒛𝑖)𝑟 𝑗𝐷 𝑗 (𝒛 𝑗) − 𝑟𝑖𝐷𝑖 (𝒛′𝑖)𝑟 𝑗𝐷 𝑗 (𝒛′𝑗)) |𝑿

]
.

Thus, we have equation (5) with 𝐾𝒎
𝑖
= 𝑟𝑖 (𝐷𝑖 (𝒛𝑖)−𝐷𝑖 (𝒛′𝑖)) and 𝐾𝒎

𝑖 𝑗
= 𝑟𝑖𝐷𝑖 (𝒛𝑖)𝑟 𝑗𝐷 𝑗 (𝒛 𝑗)−𝑟𝑖𝐷𝑖 (𝒛′𝑖)𝑟 𝑗𝐷 𝑗 (𝒛′𝑗).

□

Proof of Proposition 1. Let 𝑖 ∈ {1,2}, 𝑗 = 3− 𝑖, 𝒎 = (𝒛, 𝒛′) ∈ M1, and 𝑻 be a subset of exoge-
nous variables in 𝑿. Then, both 𝐾𝒎

𝑖
= 𝐷𝑖 (𝒛𝑖) −𝐷𝑖 (𝒛′𝑖), and 𝐾𝒎

𝑖 𝑗
= 𝐷𝑖 (𝒛𝑖)𝐷 𝑗 (𝒛 𝑗) −𝐷𝑖 (𝒛′𝑖)𝐷 𝑗 (𝒛′𝑗)

46



are binary. Thus, we have:

𝑃𝒎
𝑖 (𝑻) = 𝐸 [𝐸 [𝐾𝒎

𝑖 |𝑿] |𝑻]

= 𝐸 [𝐸 [𝐷𝑖 (𝒛𝑖) |𝑿] −𝐸 [𝐷𝑖 (𝒛′𝑖) |𝑿] |𝑻]

= 𝐸 [𝐸 [𝐷𝑖 |𝒁𝑖 = 𝒛𝑖 ,𝑿] −𝐸 [𝐷𝑖 |𝒁𝑖 = 𝒛′𝑖 ,𝑿] |𝑻],

𝑃𝒎
𝑖 𝑗 (𝑻) = 𝐸 [𝐸 [𝐾𝒎

𝑖 𝑗 |𝑿] |𝑻]

= 𝐸 [𝐸 [𝐷𝑖 (𝒛𝑖)𝐷 𝑗 (𝒛 𝑗) |𝑿] −𝐸 [𝐷𝑖 (𝒛′𝑖)𝐷 𝑗 (𝒛′𝑗) |𝑿] |𝑻]

= 𝐸 [𝐸 [𝐷𝑖𝐷 𝑗 |𝒁𝑖 = 𝒛𝑖 ,𝑿] −𝐸 [𝐷𝑖𝐷 𝑗 |𝒁𝑖 = 𝒛′𝑖 ,𝑿] |𝑻],

since potential treatments are independent of 𝒁𝑖 conditional on 𝑿 by Assumption Assump-
tion 1-(B). □

Proof of Lemma 2. The ITT effects on outcomes and treatment take-ups are expressed by
weighted averages by using the weight defined in (11). Observe that for any 𝒛 ∈ {0,1}2,

𝐸 [1{𝒁𝑖 = 𝒛}𝑌𝑖 |𝑿] = 𝐸 [𝑌𝑖 |𝒁𝑖 = 𝒛,𝑿] Pr(𝒁𝑖 = 𝒛 |𝑿),

𝐸 [1{𝒁𝑖 = 𝒛}𝐷𝑖 |𝑿] = 𝐸 [𝐷𝑖 |𝒁𝑖 = 𝒛,𝑿] Pr(𝒁𝑖 = 𝒛 |𝑿),

𝐸 [1{𝒁𝑖 = 𝒛}𝐷𝑖𝐷 𝑗 |𝑿] = 𝐸 [𝐷𝑖𝐷 𝑗 |𝒁𝑖 = 𝒛,𝑿] Pr(𝒁𝑖 = 𝒛 |𝑿),

Therefore, we have

𝐸 [𝐼𝑇𝑇𝒎
𝑖 (𝑿) |𝑻] = 𝐸

[
𝐸 [𝑌𝑖 |𝒁𝑖 = 𝒛𝑖 ,𝑿] −𝐸 [𝑌𝑖 |𝒁𝑖 = 𝒛′𝑖 ,𝑿]

��𝑻]
= 𝐸 [𝐸 [𝜔𝒎𝑌𝑖 |𝑿] |𝑻]

= 𝐸 [𝜔𝒎𝑌𝑖 |𝑻],

by law of iterative expectation. Similarly, from Proposition 1, we have

𝑃𝒎
𝑖 (𝑻) = 𝐸

[
𝐸 [𝐷𝑖 |𝒁𝑖 = 𝒛𝑖 ,𝑿] −𝐸 [𝐷𝑖 |𝒁𝑖 = 𝒛′𝑖 ,𝑿]

��𝑻]
,

= 𝐸 [𝐸 [𝜔𝒎𝐷𝑖 |𝑿] |𝑻],

= 𝐸 [𝜔𝒎𝐷𝑖 |𝑻],

𝑃𝒎
𝑖 𝑗 (𝑻) = 𝐸

[
𝐸 [𝐷𝑖𝐷 𝑗 |𝒁𝑖 = 𝒛𝑖 ,𝑿] −𝐸 [𝐷𝑖𝐷 𝑗 |𝒁𝑖 = 𝒛′𝑖 ,𝑿]

��𝑻]
,

= 𝐸 [𝐸 [𝜔𝒎𝐷𝑖𝐷 𝑗 |𝑿] |𝑻],

= 𝐸 [𝜔𝒎𝐷𝑖𝐷 𝑗 |𝑻] .
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Next, by stacking (8) for both units, we have

𝐸

[ (
𝐼𝑇𝑇𝒎

𝑖
(𝑿)

𝐼𝑇𝑇𝒎
𝑗
(𝑿)

)�����𝑻
]
=

(
𝑃𝒎
𝑖
(𝑻) 𝑃𝒎

𝑗
(𝑻) 𝑃𝒎

𝑖 𝑗
(𝑻) 0 0 0

0 0 0 𝑃𝒎
𝑗
(𝑻) 𝑃𝒎

𝑖
(𝑻) 𝑃𝒎

𝑖 𝑗
(𝑻)

) ©­­­­­­­­­­«

𝛿𝒎
𝑖
(0)

𝜃𝒎
𝑖
(1)
𝜁𝒎
𝑖

𝛿𝒎
𝑗
(1)

𝜃𝒎
𝑗
(0)
𝜁𝒎
𝑗

ª®®®®®®®®®®¬
.

Using the notations defined in Lemma 2, it can be written as

𝐸
[
𝒀̃
𝒎 |𝑻

]
= 𝑷̃

𝒎 (𝑻)𝜷𝒎 = 𝐸
[
𝑫̃

𝒎 |𝑻
]
𝜷𝒎,

thus we have (10). □

Proof of Lemma 3. Because potential treatment statuses are binary random variables, 𝐷𝑖 (𝒛𝑖) ≤
1 with probability 1. Therefore,

𝐷𝑖 (𝒛𝑖)𝐷 𝑗 (𝒛 𝑗) ≤ 𝐷 𝑗 (𝒛 𝑗),

with probability 1. Suppose 𝐷𝑖 (𝒛𝑖) ≥ 𝐷 𝑗 (𝒛 𝑗) with probability 1. Then,

𝐷𝑖 (𝒛𝑖)𝐷 𝑗 (𝒛 𝑗) ≥ 𝐷2
𝑗 (𝒛 𝑗) = 𝐷 𝑗 (𝒛 𝑗),

with probability 1. Thus, we have 𝐷𝑖 (𝒛𝑖)𝐷 𝑗 (𝒛 𝑗) = 𝐷 𝑗 (𝒛 𝑗) with probability 1.

Conversely, assume 𝐷𝑖 (𝒛𝑖)𝐷 𝑗 (𝒛 𝑗) = 𝐷 𝑗 (𝒛 𝑗) with probability 1. Suppose 𝐷𝑖 (𝒛𝑖) < 𝐷 𝑗 (𝒛 𝑗)
with positive probability, i.e., the event 𝐸 = {𝐷𝑖 (𝒛𝑖) = 0, 𝐷 𝑗 (𝒛 𝑗) = 1} occurs with positive prob-
ability, i.e., the event 𝐷 𝑗 (𝒛 𝑗) ≠ 𝐷𝑖 (𝒛𝑖)𝐷 𝑗 (𝒛 𝑗) occurs with positive probability. The desired
result is from applying the above argument conditional on any subset 𝑻 of the set of exoge-
nous variables 𝑿 □

Proof of Lemma 4. Under the given Assumptions, we have 𝐾𝒎
𝑖 𝑗
=𝐾𝒎

𝑗
as shown in (12). Thus,

𝑃𝒎
𝑖 𝑗
(𝑻) = 𝑃𝒎

𝑗
(𝑻), and

𝜁𝒎𝑖 = 𝐸 [Δ2𝑌𝑖 |𝐾𝒎
𝑖 𝑗 = 1]

= 𝐸 [(𝑌𝑖 (1,1) −𝑌𝑖 (0,1)) − (𝑌𝑖 (1,0) −𝑌𝑖 (0,0)) |𝐾𝒎
𝑖 𝑗 = 1]

= 𝐸 [Δ 𝑗𝑌𝑖 (1) −Δ 𝑗𝑌𝑖 (0) |𝐾𝒎
𝑖 𝑗 = 1]

= 𝜃𝑖 (1) − 𝜃𝑖 (0).
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It follows that 𝜁𝒎
𝑖
𝑃𝒎
𝑖 𝑗
(𝑻) = (𝜃𝑖 (1) − 𝜃𝑖 (0))𝑃𝒎

𝑗
(𝑻), and (8) becomes

𝐸 [𝐼𝑇𝑇𝒎
𝑖 (𝑿) |𝑻] = 𝛿𝒎𝑖 (0)𝑃𝒎

𝑖 (𝑻) + 𝜃𝒎𝑖 (0)𝑃𝒎
𝑗 (𝑻) + 𝜁𝒎𝑖 𝑃𝒎

𝑖 𝑗 (𝑻)

= 𝛿𝒎𝑖 (0)𝑃𝒎
𝑖 (𝑻) + 𝜃𝒎𝑖 (1)𝑃𝒎

𝑗 (𝑻) (A.1)

By stacking (A.1) for both units,

𝐸

[ (
𝐼𝑇𝑇𝒎

𝑖
(𝑿)

𝐼𝑇𝑇𝒎
𝑗
(𝑿)

)�����𝑻
]
=

(
𝑃𝒎
𝑖
(𝑻) 𝑃𝒎

𝑗
(𝑻) 0 0

0 0 𝑃𝒎
𝑗
(𝑻) 𝑃𝒎

𝑖
(𝑻)

) ©­­­­­«
𝛿𝒎
𝑖
(0)

𝜃𝒎
𝑖
(1)

𝛿𝒎
𝑗
(1)

𝜃𝒎
𝑗
(0)

ª®®®®®¬
.

Using the notations defined in Lemma 4, we have (13). □

Proof of Lemma 5. Under the given Assumptions, we have 𝐾𝒎
𝑗
= 0. Thus, (8) becomes

𝐸 [𝐼𝑇𝑇𝒎
𝑖 (𝑿) |𝑻] = 𝛿𝒎𝑖 (0)𝑃𝒎

𝑖 (𝑻) + 𝜁𝒎𝑖 𝑃𝒎
𝑖 𝑗 (𝑻)

𝐸 [𝐼𝑇𝑇𝒎
𝑗 (𝑿) |𝑻] = 𝜃𝒎𝑗 (0)𝑃𝒎

𝑖 (𝑻) + 𝜁𝒎𝑗 𝑃𝒎
𝑖 𝑗 (𝑻)

(A.2)

By stacking (A.2) for both units,

𝐸

[ (
𝐼𝑇𝑇𝒎

𝑖
(𝑿)

𝐼𝑇𝑇𝒎
𝑗
(𝑿)

)�����𝑻
]
=

(
𝑃𝒎
𝑖
(𝑻) 𝑃𝒎

𝑖 𝑗
(𝑻) 0 0

0 0 𝑃𝒎
𝑗
(𝑻) 𝑃𝒎

𝑖 𝑗
(𝑻)

) ©­­­­­«
𝛿𝒎
𝑖
(0)
𝜁𝒎
𝑖

𝜃𝒎
𝑗
(0)
𝜁𝒎
𝑗

ª®®®®®¬
.

Using the notations defined in Lemma 5, we have (14). □

Proof of Proposition 2, Proposition 3, and Proposition 4. Assumptions 1-3 imply conditional
moment (10) by Lemma 2. Let 𝑹(𝑻) be a matrix of functions of 𝑻 satisfying Assump-
tion 4. Then, we have the unconditional moment 𝐸 [𝑹(𝑻) (𝒀̃𝒎 − 𝑫̃

𝒎
𝜷𝒎)] = 0, or, equivalently,

𝐸 [𝑹(𝑻)𝑫̃𝒎]𝜷𝒎 = 𝐸 [𝑹(𝑻)𝒀̃𝒎]. Because 𝐸 [𝑹(𝑻)𝑫̃𝒎] is nonsingular by Assumption 4, result-
ing in 𝜷𝒎 = 𝐸 [𝑹(𝑻)𝑫̃𝒎]−1𝐸 [𝑹(𝑻)𝒀̃𝒎] in Proposition 2.

The results in Proposition 3 and Proposition 4 follows by the same argument by replacing
(𝑫̃𝒎

, 𝜷𝒎) with (𝑫̌𝒎
, 𝜷̌

𝒎) and (𝑫̄𝒎
, 𝜷̄

𝒎), respectively. □

Proof of Proposition 5. Recall (15):

𝐾𝒎
𝑖 𝑗 = 𝐾

𝒎
𝑖 𝐷 𝑗 (𝒛 𝑗) = 𝐾𝒎

𝑖 𝐷 𝑗 (𝒛′𝑗).
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If unit 𝑗 is 𝒎-never-taker, then we have 𝐾𝒎
𝑖 𝑗

= 𝐾𝒎
𝑗
= 0. Thus, last two terms in (7) become

zero, and (7) becomes

𝐸 [𝐼𝑇𝑇𝒎
𝑖 (𝑿)] = 𝛿𝒎𝑖 (0)𝑃𝒎

𝑖 , 𝐸 [𝐼𝑇𝑇𝒎
𝑗 (𝑿)] = 𝜃𝒎𝑗 (0)𝑃𝒎

𝑖 .

Thus, we have the result in Part (i). On the other hand, if unit 𝑗 is 𝒎-always-taker, then we
have 𝐾𝒎

𝑖 𝑗
= 𝐾𝒎

𝑖
, and

𝜁𝒎𝑖 = 𝐸 [Δ2𝑌𝑖 |𝐾𝒎
𝑖 𝑗 = 1]

= 𝐸 [(𝑌𝑖 (1,1) −𝑌𝑖 (0,1)) − (𝑌𝑖 (1,0) −𝑌𝑖 (0,0)) |𝐾𝒎
𝑖 = 1]

= 𝐸 [Δ𝑖𝑌𝑖 (1) −Δ𝑖𝑌𝑖 (0) |𝐾𝒎
𝑖 = 1]

= 𝛿𝑖 (1) − 𝛿𝑖 (0).

Similarly, we have 𝜁𝒎
𝑗
= 𝜃 𝑗 (1) − 𝜃 𝑗 (0). Therefore, (7) becomes

𝐸 [𝐼𝑇𝑇𝒎
𝑖 (𝑿)] = 𝛿𝒎𝑖 (1)𝑃𝒎

𝑖 , 𝐸 [𝐼𝑇𝑇𝒎
𝑗 (𝑿)] = 𝜃𝒎𝑗 (1)𝑃𝒎

𝑖 .

Thus, we have the result in Part (ii). □

A.2 Regularity Conditions

Following assumptions lists required regularity conditions for asymptotic properties in Propo-
sition 6.

Assumption 8 (Regularity Conditions).

1. {𝑽𝑔 : 1 ≤ 𝑔 ≤ 𝐺} are independently and identically distributed.

2. 𝐸 [


𝒀𝑔



4] <∞.

3. 𝑺(𝑻𝑔) is positive definite and 𝐸 [𝑷̃′(𝑻𝑔)𝑺−1(𝑻𝑔) 𝑷̃(𝑻𝑔)] is nonsingular.

4. 𝜷 ∈ B ⊂ R𝑘 , B is compact. And 𝜸0 ∈ Γ, and 𝝓0 ∈ Φ are interior points.

5. (i) There exists 𝑞0 such that 0 < 𝑞0 ≤ inf
𝜸∈N𝛾

𝑞(𝒛,𝑿𝑔,𝜸) with probability 1, for all 𝒛 ∈

{0,1}2, for some neighborhood N𝛾 of 𝜸0, (ii) 𝑞 is continuously differentiable in 𝜸 with

probability 1, and (iii) 𝐸
[
sup𝜸∈




𝜕𝑞 (𝒛,𝑿𝑔 ,𝜸)
𝜸′




2
]
<∞ for all 𝒛 ∈ {0,1}2.
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6. (i) There exists 𝜆0 such that 0 < 𝜆0 ≤ inf
𝝓∈N𝜙

{
minimum eigenvalue of 𝑺(𝑻𝑔,𝝓)

}
with proba-

bility 1, for some neighborhood N𝜙 of 𝝓0, (ii) 𝑺(𝑻𝑔,𝝓), 𝑷̃(𝑻𝑔,𝝓) are continuously differ-

entiable in 𝝓 with probability 1, and (iii) 𝐸

[
sup
𝝓∈N𝜙




𝜕𝑺 (𝑻𝑔 ,𝝓)
𝜕𝝓′




2
]
<∞, 𝐸

[
sup
𝝓∈N𝜙




𝜕𝑷̃ (𝑻𝑔 ,𝝓)
𝜕𝝓′




2
]
<

∞.

8.1 assumes the population consists of i.i.d. groups. 8.2 assumes the existence of the
fourth moment. 8.3 is a specialization of Assumption 4 to the optimal matrix of instruments.
8.5 and 8.6 assume that the functions used in the parametric model are smooth and bounded.

A.3 Proof of Proposition 6

The following lemma is Lemma 4.3 in Newey and McFadden (1994), and will be used to
prove Proposition 6.

Lemma 6. Let 𝑽𝑔 be a random vector whose support is V and ℓ : V×Φ→ R𝑀 be a vector

of real valued functions that is integrable with respect to the distribution of 𝑽𝑔 at each point

𝜙 ∈ Φ ⊂ R𝐾 . Define followings:

𝐿𝐺 (𝜙) = 1
𝐺

𝐺∑︁
𝑔=1

ℓ(𝑽𝑔, 𝜙), 𝐿 (𝜙) = 𝐸 [ℓ(𝑽𝑔, 𝜙)] .

Suppose (a) {𝑽𝑔} is independently and identically distributed; (b) 𝜙
𝑝

−→ 𝜙0, 𝜙0; (c) ℓ(𝒗, 𝜙) is

continuous at 𝜙0 for all 𝒗 ∈V; (d) For some neighborhood N of 𝜙0, we have 𝐸
[
sup𝜙∈N



ℓ(𝑽𝑔, 𝜙)


] <

∞. Then, 𝐿 (𝜙) is continuous at 𝜙0 and 𝐿𝐺 (𝜙)
𝑝

−→ 𝐿 (𝜙0).

Proof. Consider a sequence {𝜙𝑛} → 𝜙0. For the neighborhood N of 𝜙0 satisfying (d), we
have ∥ℓ(𝑣, 𝜙𝑛)∥ ≤ sup𝜙∈N ∥ℓ(𝑣, 𝜙)∥ =: 𝑔(𝑣), for all but finite number of 𝑛, where 𝑔(𝑣) is
integrable by (d). Thus, by dominated convergence thoerem, we have {𝐸 [ℓ(𝑽𝑔, 𝜙𝑛)]} →
𝐸 [ℓ(𝑽𝑔, 𝜙0)], which implies continuity of 𝐿 (𝜙) at 𝜙0. See proof of Lemma 4.3 in Newey
and McFadden (1994) for 𝐿𝐺 (𝜙)

𝑝
−→ 𝐿 (𝜙0). □
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Proof of Proposition 6. Let 𝒎 = (𝒛, 𝒛′) ∈ M1 be a monotone pair. Recall that

𝑫̃𝑔 =

(
𝐷𝑖𝑔 𝐷 𝑗𝑔 𝐷𝑖𝑔𝐷 𝑗𝑔 0 0 0
0 0 0 𝐷 𝑗𝑔 𝐷𝑖𝑔 𝐷𝑖𝑔𝐷 𝑗𝑔

)
,

𝑷̃(𝑻𝑔,𝝓) =
(
𝑃𝑖 (𝑻𝑔,𝝓) 𝑃 𝑗 (𝑻𝑔,𝝓) 𝑃𝑖 𝑗 (𝑻𝑔,𝝓) 0 0 0

0 0 0 𝑃 𝑗 (𝑻𝑔,𝝓) 𝑃𝑖 (𝑻𝑔,𝝓) 𝑃𝑖 𝑗 (𝑻𝑔,𝝓)

)
,

Since every norm is equivalent for a finite dimensional vector space, let ∥·∥ be Frobenius
norm, i.e., ∥𝑣∥ = tr(𝑣𝑣′)1/2. Then,

𝑷̃(𝑻𝑔,𝝓)



 = √︃
2(𝑃2

𝑖
(𝑻𝑔,𝝓) +𝑃2

𝑗
(𝑻𝑔,𝝓) +𝑃2

𝑖 𝑗
(𝑻𝑔,𝝓)) ≤

√
6, (A.3)

𝑫̃

 = √︃

2(𝐷𝑖𝑔 +𝐷 𝑗𝑔 +𝐷𝑖𝑔𝐷 𝑗𝑔) ≤
√

6, (A.4)

For the neighborhood N𝛾 satisfying Assumption 8.5,

sup
𝜸∈N𝛾

|𝜔𝑔 (𝜸) | = sup
𝜸∈N𝛾

���� 1{𝒁𝑔 = 𝒛}
𝑞(𝒛,𝑿𝑔,𝜸)

−
1{𝒁𝑔 = 𝒛′}
𝑞(𝒛′,𝑿𝑔,𝜸)

���� ≤ 2
𝑞0
. (A.5)

Next, let 𝜆max(𝐴),𝜆min(𝐴) be maximum, minimum eigenvalue of a square matrix 𝐴, respec-
tively. Then, for the compact neighborhood N𝜙 satisfying Assumption 8.6,

sup
𝝓∈N𝜙



𝑺−1(𝑻𝑔,𝝓)


 ≤ √

2 sup
𝝓∈N𝜙



𝑺−1(𝑻𝑔,𝝓)




2

≤
√

2 sup
𝝓∈N𝜙

𝜆max(𝑺−1(𝑻𝑔,𝝓))

=
√

2 sup
𝝓∈N𝜙

𝜆min(𝑺(𝑻𝑔,𝝓))−1

=
√

2
(

inf
𝝓∈N𝜙

𝜆min(𝑺(𝑻𝑔,𝝓))
)−1

≤
√

2
𝜆0
, (A.6)

with probability 1, where ∥·∥2 is the spectral norm which is the maximum eigenvalue of the
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matrix. Thus, for a neighborhood N :=N𝛾 ×N𝜙 of (𝝓0,𝜸0), we have

𝐸

[
sup

(𝝓,𝜸) ∈N



𝜔𝑔 (𝜸)𝑹(𝑻𝑔,𝝓)𝑫̃𝑔



] = 𝐸 [
sup

(𝝓,𝜸) ∈N



𝜔𝑔 (𝜸) 𝑷̃(𝑻𝑔,𝝓)′𝑺−1(𝑽𝑔,𝝓)𝑫̃𝑔



]
≤ 𝐸

[
sup
𝜸∈N𝛾

|𝜔𝑔 (𝜸) | sup
𝝓∈N𝜙



𝑷̃(𝑻𝑔,𝝓)


 sup
𝝓∈N𝜙



𝑺−1(𝑽𝑔,𝝓)




𝑫̃𝑔



]
≤ 12

√
2

𝜆0𝑞0
<∞,

𝐸

[
sup

(𝝓,𝜸) ∈N



𝜔𝑔 (𝜸)𝑹(𝑻𝑔,𝝓)𝒀𝑔



] = 𝐸 [
sup

(𝝓,𝜸) ∈N



𝜔𝑔 (𝜸) 𝑷̃(𝑻𝑔,𝝓)′𝑺−1(𝑽𝑔,𝝓)𝒀𝑔



]
≤ 𝐸

[
sup
𝜸∈N𝛾

|𝜔𝑔 (𝜸) | sup
𝝓∈N𝜙



𝑷̃(𝑻𝑔,𝝓)


 sup
𝝓∈N𝜙



𝑺−1(𝑽𝑔,𝝓)




𝒀𝑔



]
≤ 4

√
3

𝜆0𝑞0
𝐸

[

𝒀𝑔



] <∞,

Thus, by Lemma 6, we have

1
𝐺

𝐺∑︁
𝑔=1

𝜔𝑔 (𝜸̂)𝑹(𝑻𝑔,𝝓)𝑫̃𝑔

𝑝
−→ 𝐸 [𝜔𝑔𝑹(𝑻𝑔)𝑫̃𝒈] = 𝐸 [𝑷̃(𝑻𝑔)′𝑺−1(𝑻𝑔) 𝑷̃(𝑻𝑔)],

1
𝐺

𝐺∑︁
𝑔=1

𝜔𝑔 (𝜸̂)𝑹(𝑻𝑔,𝝓)𝒀𝑔

𝑝
−→ 𝐸 [𝜔𝑔𝑹(𝑻𝑔)𝒀𝑔] = 𝐸 [𝑷̃(𝑻𝑔)′𝑺−1(𝑻𝑔) 𝑷̃(𝑻𝑔)]𝜷0.

The consistency follows from the Slutsky’s theorem. Let 𝜺𝑔 := (𝒀𝑔 − 𝑫̃𝑔𝜷0). Since 𝝓0,𝜸0 are
interior points, by mean value theorem, there exists 𝜸̄ and 𝝓 that satisfy

0 =
1
√
𝐺

𝐺∑︁
𝑔=1

𝜔𝑔 (𝜸̂)𝑹(𝑻𝑔,𝝓) (𝒀𝑔 − 𝑫̃𝑔 𝜷̂)

=
1
√
𝐺

𝐺∑︁
𝑔=1

𝜔𝑔𝑹(𝑻𝑔)𝜺𝑔 −


1
𝐺

𝐺∑︁
𝑔=1

𝜔𝑔 (𝜸̄)𝑹(𝑻𝑔,𝝓)𝑫̃𝑔


√
𝐺 ( 𝜷̂− 𝜷0)

+
𝑘𝜙∑︁
𝑗=1


1
𝐺

𝐺∑︁
𝑔=1

𝜔𝑔 (𝜸̄)𝜺𝑔
𝜕𝑹(𝑻𝑔,𝝓)

𝜕𝜙 𝑗


√
𝐺 (𝜙 𝑗 −𝜙 𝑗0)

+


1
𝐺

𝐺∑︁
𝑔=1

𝑹(𝑻𝑔,𝝓)𝜺𝑔
𝜕𝜔𝑔 (𝜸̄)
𝜕𝛾′


√
𝐺 (𝜸̂−𝜸0). (A.7)
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By (A.3), (A.6), and Assumption 8.6,

𝐸

[
sup
𝝓∈N𝜙





𝜕𝑹(𝑻𝑔,𝝓)
𝜕𝜙 𝑗





]
= 𝐸

[
sup
𝝓∈N𝜙






𝜕 𝑷̃(𝑻𝑔,𝝓)
𝜕𝜙 𝑗

𝑺−1(𝑻𝑔,𝝓) + 𝑷̃(𝑻𝑔,𝝓)
𝜕𝑺−1(𝑻𝑔,𝝓)

𝜕𝜙 𝑗







]

= 𝐸

[
sup
𝝓∈N𝜙






𝜕 𝑷̃(𝑻𝑔,𝝓)
𝜕𝜙 𝑗

𝑺−1(𝑻𝑔, 𝜙) − 𝑷̃(𝑻𝑔,𝝓)𝑺−1(𝑻𝑔,𝝓)
𝜕𝑺(𝑻𝑔,𝝓)
𝜕𝜙 𝑗

𝑺−1(𝑻𝑔,𝝓)






]

≤
√

2
𝜆0
𝐸

[
sup
𝝓∈N𝜙






𝜕 𝑷̃(𝑻𝑔, 𝜙)
𝜕𝜙 𝑗







]
+ 2

√
6

𝜆2
0
𝐸

[
sup
𝝓∈N𝜙





𝜕𝑺(𝑻𝑔, 𝜙)
𝜕𝜙 𝑗





] <∞ (A.8)

Similarly, for the neighborhood N𝛾 of 𝜸0,

𝐸

[
sup
𝜸∈N𝛾





𝜕𝜔𝑔 (𝜸)
𝜕𝛾′





]
= 𝐸

[
sup
𝜸∈N𝛾





− 1{𝒁𝑔 = 𝒛}
𝑞2(𝒛,𝑿𝑔,𝜸)

𝜕𝑞(𝒛,𝑿𝑔,𝜸)
𝜕𝜸

+
1{𝒁𝑔 = 𝒛′}
𝑞2(𝒛′,𝑿𝑔,𝜸)

𝜕𝑞(𝒛′,𝑿𝑔,𝜸)
𝜕𝜸





]
≤ 𝐸

[
1
𝑞2

0
sup
𝜸∈N𝛾





𝜕𝑞(𝒛,𝑿𝑔,𝜸)
𝜕𝜸′





+ 1
𝑞2

0
sup
𝜸∈N𝛾





𝜕𝑞(𝒛′,𝑿𝑔,𝜸)
𝜕𝜸′





]
≤ 2
𝑞2

0
max

{
𝐸

[
sup
𝜸∈N𝛾





𝜕𝑞(𝒛,𝑿𝑔,𝜸)
𝜕𝜸′





] , 𝐸 [
sup
𝜸∈N𝛾





𝜕𝑞(𝒛′,𝑿𝑔,𝜸)
𝜕𝜸′





]} <∞ (A.9)

Therefore, we have a neighborhood M =N𝜙 ×N𝛾 such that

𝐸

[
sup

(𝝓,𝜸) ∈M





𝜔𝑔 (𝜸)𝜺𝑔
𝜕𝑹(𝑻𝑔, 𝜙)
𝜕𝜙 𝑗





]
≤ 𝐸

[
sup
𝝓∈N𝜙





𝜕𝑹(𝑻𝑔,𝝓)
𝜕𝜙 𝑗





2
] 1

2

𝐸

[
sup
𝜸∈N𝛾

|𝜔𝑔 (𝜸) |4
] 1

4

𝐸

[

𝜺𝑔

4
] 1

4
<∞,

because the first term is bounded by (A.8), second term is bounded by (A.5), and the last term
is bounded by Assumption 8.2. Furthermore, we have

𝐸

[
sup

(𝝓,𝜸) ∈M





𝑹(𝑻𝑔,𝝓)𝜺𝑔
𝜕𝜔𝑔 (𝜸)
𝜕𝜸′





]
≤ 𝐸

[
sup
𝝓∈N𝜙



𝑹(𝑻𝑔, 𝜙)


4

] 1
4

𝐸

[

𝜺𝑔

4
] 1

4
𝐸

[
sup
𝜸∈N𝛾





𝜕𝜔𝑔 (𝜸)
𝜕𝜸′





2
] 1

2
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because the first and the second terms are bounded by (A.3), (A.6), and Assumption 8.2, and
the last term is

𝐸

[
sup
𝜸∈N𝛾





𝜕𝜔𝑔 (𝜸)
𝜕𝜸′





2
] 1

2

≤ 2
𝑞2

0
max

𝒛∈{0,1}2
𝐸

[
sup
𝜙∈N𝜙





𝜕𝑞(𝒛,𝑿𝑔, 𝛾)
𝜕𝛾′





2
] 1

2

<∞,

by (A.9). Therefore, by applying Lemma 6 for each term in (A.7), we have

0 =
1
√
𝐺

𝐺∑︁
𝑔=1

𝜔𝑔𝑹(𝑻𝑔)𝜺𝑔 −𝐸
[
𝜔𝑔𝑹(𝑻𝑔)𝑫̃𝑔

]√
𝐺 ( 𝜷̂− 𝜷0)

+
𝑘𝜙∑︁
𝑗=1
𝐸

[
𝜔𝑔𝜺𝑔

𝜕𝑹(𝑻𝑔,𝝓0)
𝜕𝜙 𝑗

]√
𝐺 (𝜙 𝑗 −𝜙 𝑗0) +𝐸

[
𝑹(𝑻𝑔)𝜺𝑔

𝜕𝜔𝑔 (𝜸0)
𝜕𝛾′

]√
𝐺 (𝜸̂−𝜸0) + 𝑜𝑝 (1). (A.10)

The third term in (A.10) is zero because

𝐸

[
𝜔𝑔𝜺𝑔

𝜕𝑹(𝑻𝑔,𝝓0)
𝜕𝜙 𝑗

]
= 𝐸

𝐸
[
𝜔𝑔𝜺𝑔 |𝑻𝑔

]︸          ︷︷          ︸
=0

𝜕𝑹(𝑻𝑔,𝝓0)
𝜕𝜙 𝑗

 ,
by the given moment condition (10). By Assumption 7, we have

√
𝐺 (𝜸̂−𝜸0) =

1
√
𝐺

𝐺∑︁
𝑔=1

𝜓𝛾 (𝑽𝑔,𝜸0) + 𝑜𝑝 (1).

Therefore, by rearranging (A.10), we have

√
𝐺 ( 𝜷̂− 𝜷0) =

1
√
𝐺

𝐺∑︁
𝑔=1

𝑨−1 [
𝜔𝑔𝑹(𝑻𝑔) (𝒀𝑔 − 𝑫̃𝑔𝜷0) +𝑩𝜓𝛾 (𝑽𝑔,𝜸0)

]︸                                                      ︷︷                                                      ︸
:=𝜓𝛽 (𝑽 𝑔 ,𝜷0 )

+ 𝑜𝑝 (1),

where 𝑨 = 𝐸
[
𝜔𝑔𝑹(𝑻𝑔)𝑫̃𝑔

]
= 𝐸

[
𝑷̃
′(𝑻𝑔)𝑺−1(𝑻𝑔) 𝑷̃(𝑻𝑔)

]
, and 𝑩 = 𝐸

[
𝑹(𝑻𝑔)𝜺𝑔

𝜕𝜔𝑔 (𝜸0 )
𝜕𝛾′

]
. □

B Additional Tables

B.1 Simulation
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Table B.1: Simulation of Design 1

Use true 𝜔 Estimate 𝜔

𝐺 Probit Linear Probit Linear

MSE 200 2710.46 168139.32 3094.09 291167.35
400 1567.27 2498.3 741.76 1566.72
500 720.74 765.76 679.73 642.41
800 325.74 360.43 288.04 319.61

1,000 259.55 287.12 225.69 250.65
2,000 121.32 130.04 104.22 111.75

MAE 200 59.84 88.79 58.62 90.81
400 39.22 43.32 37.05 41.17
500 34.1 36.58 32.31 34.48
800 26.01 27.22 24.53 25.7

1,000 23.41 24.51 21.95 22.98
2,000 16.26 16.73 15.07 15.54

Coverage 200 0.98 0.95 0.97 0.95
400 0.97 0.95 0.97 0.94
500 0.97 0.95 0.96 0.94
800 0.96 0.95 0.96 0.95

1,000 0.96 0.94 0.96 0.95
2,000 0.95 0.94 0.95 0.95

notes. This table presents simulation results for 𝐵 = 10,000 replications. Column 𝐺 denotes the
number of groups. 𝑀𝑆𝐸 is

∑𝐵
𝑏=1



𝛽𝑏 − 𝛽0


2 /𝐵, where 𝛽𝑏 = (𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ is the vec-

tor of estimates in 𝑏th replication, and 𝛽0 = (𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ is the true vector of param-
eters. The actual parameter values are 𝛿1(0) = 20, 𝜃1(0) = 10, 𝛿2(0) = 30, 𝜃2(0) = 15. MAE is∑𝐵

𝑏=1
∑4

𝑘=1 |𝛽𝑘𝑏 − 𝛽0𝑘 |/4𝐵. Coverage computes the minimum 95% coverage rate among four es-
timate, i.e., min1≤𝑘≤4

∑𝐵
𝑏=11{𝛽𝑘𝑏 − 1.96𝑆𝐸 (𝛽𝑘𝑏) ≤ 𝛽0𝑘 ≤ 𝛽𝑘𝑏 + 1.96𝑆𝐸 (𝛽𝑘𝑏)}/𝐵. The first two

columns (“Use true 𝜔”) use the true propensity score Pr(𝒁𝑖 = 𝒛 |𝑿) for the weight 𝜔, while the last
two columns (“Estimate 𝜔”) estimate the propensity score and hence 𝜔. Linear and Probit denote
that the optimal instrument 𝑃𝒎1

𝑖
(𝑻) is estimated by linear probability model, and probit model, re-

spectively.
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Table B.2: Simulation of Design 2

Use true 𝜔 Estimate 𝜔

𝐺 Probit Linear Probit Linear

MSE 200 44.91 42.19 31.01 29.56
400 22.41 21.38 14.18 13.73
500 17.75 16.94 11.34 11.06
800 11.12 10.66 6.97 6.81

1,000 8.86 8.57 5.52 5.44
2,000 4.44 4.31 2.72 2.67

MAE 200 7.36 7.06 6.17 5.98
400 5.25 5.09 4.18 4.1
500 4.68 4.55 3.74 3.69
800 3.7 3.62 2.94 2.9

1,000 3.33 3.27 2.61 2.6
2,000 2.34 2.31 1.84 1.82

Coverage 200 0.92 0.94 0.93 0.94
400 0.94 0.94 0.94 0.94
500 0.94 0.95 0.94 0.94
800 0.94 0.94 0.94 0.94

1,000 0.95 0.95 0.94 0.94
2,000 0.95 0.95 0.94 0.95

notes. This table presents simulation results for 𝐵 = 10,000 replications. Column 𝐺 denotes the
number of groups. 𝑀𝑆𝐸 is

∑𝐵
𝑏=1



𝛽𝑏 − 𝛽0


2 /𝐵, where 𝛽𝑏 = (𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ is the vec-

tor of estimates in 𝑏th replication, and 𝛽0 = (𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ is the true vector of param-
eters. The actual parameter values are 𝛿1(0) = 20, 𝜃1(0) = 10, 𝛿2(0) = 30, 𝜃2(0) = 15. MAE is∑𝐵

𝑏=1
∑4

𝑘=1 |𝛽𝑘𝑏 − 𝛽0𝑘 |/4𝐵. Coverage computes the minimum 95% coverage rate among four es-
timate, i.e., min1≤𝑘≤4

∑𝐵
𝑏=11{𝛽𝑘𝑏 − 1.96𝑆𝐸 (𝛽𝑘𝑏) ≤ 𝛽0𝑘 ≤ 𝛽𝑘𝑏 + 1.96𝑆𝐸 (𝛽𝑘𝑏)}/𝐵. The first two

columns (“Use true 𝜔”) use the true propensity score Pr(𝒁𝑖 = 𝒛 |𝑿) for the weight 𝜔, while the last
two columns (“Estimate 𝜔”) estimate the propensity score and hence 𝜔. Linear and Probit denote
that the optimal instrument 𝑃𝒎1

𝑖
(𝑻) is estimated by linear probability model, and probit model, re-

spectively.
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Table B.3: Simulation of Design 3

Use true 𝜔 Estimate 𝜔

𝐺 Probit Linear Probit Linear

MSE 200 107.9 184.18 105.09 116.68
400 46.86 47.36 46.45 46.69
500 38.58 38.79 38.01 38.1
800 22.78 22.79 22.48 22.48

1,000 17.76 17.77 17.49 17.5
2,000 9.3 9.29 9.17 9.16

MAE 200 10.78 11.16 11.02 11.23
400 7.43 7.46 7.47 7.49
500 6.79 6.8 6.79 6.8
800 5.28 5.28 5.26 5.25

1,000 4.68 4.68 4.65 4.65
2,000 3.39 3.39 3.38 3.38

Coverage 200 0.96 0.96 0.95 0.95
400 0.96 0.96 0.95 0.95
500 0.96 0.96 0.95 0.95
800 0.96 0.96 0.95 0.95

1,000 0.96 0.96 0.95 0.95
2,000 0.95 0.95 0.95 0.95

notes. This table presents simulation results for 𝐵 = 10,000 replications. Column 𝐺 denotes the
number of groups. 𝑀𝑆𝐸 is

∑𝐵
𝑏=1



𝛽𝑏 − 𝛽0


2 /𝐵, where 𝛽𝑏 = (𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ is the vec-

tor of estimates in 𝑏th replication, and 𝛽0 = (𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ is the true vector of param-
eters. The actual parameter values are 𝛿1(0) = 20, 𝜃1(0) = 10, 𝛿2(0) = 30, 𝜃2(0) = 15. MAE is∑𝐵

𝑏=1
∑4

𝑘=1 |𝛽𝑘𝑏 − 𝛽0𝑘 |/4𝐵. Coverage computes the minimum 95% coverage rate among four es-
timate, i.e., min1≤𝑘≤4

∑𝐵
𝑏=11{𝛽𝑘𝑏 − 1.96𝑆𝐸 (𝛽𝑘𝑏) ≤ 𝛽0𝑘 ≤ 𝛽𝑘𝑏 + 1.96𝑆𝐸 (𝛽𝑘𝑏)}/𝐵. The first two

columns (“Use true 𝜔”) use the true propensity score Pr(𝒁𝑖 = 𝒛 |𝑿) for the weight 𝜔, while the last
two columns (“Estimate 𝜔”) estimate the propensity score and hence 𝜔. Linear and Probit denote
that the optimal instrument 𝑃𝒎1

𝑖
(𝑻) is estimated by linear probability model, and probit model, re-

spectively.
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Table B.4: Simulation of Design 1 for each parameter

Design 1

𝐺 𝛿1(0) 𝜃1(0) 𝛿2(0) 𝜃2(0)

Mean 200 19.56 10.11 28.44 15.04
400 19.87 9.9 29.3 14.96
500 19.83 10.05 29.62 14.93
800 19.97 9.9 29.71 15.04

1,000 19.89 9.86 29.71 14.88
2,000 19.93 10.03 30 14.96

Med 200 19.59 10.91 29.57 15.17
400 19.8 10.41 30.3 15.01
500 19.83 10.36 30.28 14.96
800 19.98 10.24 30.08 15.05

1,000 19.9 10.1 29.94 14.97
2,000 19.91 10.13 30.17 14.89

MSE 200 267.41 974.83 1524.68 327.18
400 56 213.54 394.99 77.24
500 48.37 252.33 323.38 55.65
800 22.93 86.1 149.97 29.03

1,000 18.22 67.54 117.18 22.75
2,000 8.64 30.9 53.93 10.74

Coverage 200 0.97 0.98 0.97 0.97
400 0.97 0.97 0.97 0.97
500 0.96 0.97 0.97 0.97
800 0.96 0.96 0.97 0.97

1,000 0.96 0.96 0.96 0.96
2,000 0.95 0.96 0.96 0.95

notes. This table presents simulation results for 𝐵 = 10,000 replications. Column 𝐺 denotes
the number of groups. Mean is

∑𝐵
𝑏=1 𝛽𝑏/𝐵, where 𝛽𝑏 = (𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ is the vec-

tor of estimates in 𝑏th replication, and 𝛽0 = (𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ = (20,10,30,15)′ is the
true vector of parameters. Med is the median of 𝛽𝑏 among 𝐵 simulated estimates. 𝑀𝑆𝐸 is∑𝐵

𝑏=1


𝛽𝑏 − 𝛽0



2 /𝐵. Coverage computes the 95% coverage rate, i.e.,
∑𝐵

𝑏=11{𝛽𝑘𝑏 −1.96𝑆𝐸 (𝛽𝑘𝑏) ≤
𝛽0𝑘 ≤ 𝛽𝑘𝑏 +1.96𝑆𝐸 (𝛽𝑘𝑏)}/𝐵.
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Table B.5: Simulation of Design 2 and 3 for each parameter

Design 1

𝐺 𝛿1(0) 𝜃1(0) 𝛿2(0) 𝜃2(0)

Mean 200 20.24 15.19 19.3 14.47
400 20.12 15.09 19.75 14.81
500 20.1 15.08 19.87 14.9
800 20.07 15.05 19.91 14.93

1,000 20.04 15.03 19.89 14.92
2,000 20.04 15.03 19.95 14.96

Med 200 20.67 15.51 18.95 14.22
400 20.3 15.23 19.64 14.71
500 20.24 15.18 19.65 14.73
800 20.14 15.1 19.78 14.84

1,000 20.13 15.09 19.79 14.84
2,000 20.07 15.05 19.91 14.92

MSE 200 19.73 11.28 67.15 37.93
400 9.01 5.16 29.71 16.74
500 7.22 4.12 24.29 13.72
800 4.44 2.53 14.37 8.1

1,000 3.51 2.01 11.19 6.3
2,000 1.73 0.99 5.86 3.3

Coverage 200 0.93 0.93 0.95 0.95
400 0.94 0.94 0.95 0.95
500 0.94 0.94 0.95 0.95
800 0.94 0.94 0.95 0.95

1,000 0.94 0.94 0.95 0.95
2,000 0.95 0.94 0.95 0.95

notes. This table presents simulation results for 𝐵 = 10,000 replications. Column 𝐺 denotes
the number of groups. Mean is

∑𝐵
𝑏=1 𝛽𝑏/𝐵, where 𝛽𝑏 = (𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ is the vec-

tor of estimates in 𝑏th replication, and 𝛽0 = (𝛿1(0), 𝜃1(0), 𝛿2(0), 𝜃2(0))′ = (20,10,30,15)′ is the
true vector of parameters. Med is the median of 𝛽𝑏 among 𝐵 simulated estimates. 𝑀𝑆𝐸 is∑𝐵

𝑏=1


𝛽𝑏 − 𝛽0



2 /𝐵. Coverage computes the 95% coverage rate, i.e.,
∑𝐵

𝑏=11{𝛽𝑘𝑏 −1.96𝑆𝐸 (𝛽𝑘𝑏) ≤
𝛽0𝑘 ≤ 𝛽𝑘𝑏 +1.96𝑆𝐸 (𝛽𝑘𝑏)}/𝐵.

B.2 Non-Additive Separable Outcomes

This section discuss a simulation design under total monotonicity, but the outcome is not
additively separable. Following Table 2, there are 5 compliance types for each unit. Let
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𝐾𝑖 ∈ K := {𝐴𝑇, 𝑆𝐶,𝐶,𝐺𝐶,𝑁𝑇} be a discrete random variable denoting unit 𝑖’s compliance
type. Then, as shown in Appendix C, we can define direct and indirect local average treatment
effects for each compliance type in K. Potential outcomes are generated from the following
structural equation:

𝑌𝑖 (𝑑1, 𝑑2) = 𝛼𝑖 (𝑑1) +𝜙𝑖 (𝑑2) + 𝜌𝛼𝑖 (𝑑1)𝜙𝑖 (𝑑2) + 𝛽𝑦𝑖 𝑌 𝑗 (𝑑2, 𝑑1) + 𝛽𝑤1𝑖𝑊𝑖 + 𝛽𝑤2𝑖𝑊 𝑗 . (B.1)

Here, 𝛼𝑖 (𝑑), 𝜙𝑖 (𝑑) are random components generated by

𝛼𝑖 (𝑑) =
∑︁
𝑘∈K

1{𝐾𝑖 = 𝑘}𝛼𝑘
𝑖 (𝑑), 𝛼𝑘

𝑖 (1) ∼ 𝑁 (𝛼̄𝑘
𝑖 ,1), 𝛼𝑘

𝑖 (0) ∼ 𝑁 (0,1),

𝜙𝑖 (𝑑) =
∑︁
𝑘∈K

1{𝐾 𝑗 = 𝑘}𝜙𝑘𝑖 (𝑑), 𝜙𝑘𝑖 (1) ∼ 𝑁 (𝜙𝑘𝑖 ,1), 𝜙𝑘𝑖 (0) ∼ 𝑁 (0,1),

for 𝑖 ∈ {1,2}. This reflects that direct effects depends on the own compliance type, while in-
direct effects depend on the other’s compliance type. The third term in (B.1) is an interaction
term, which is a part of last term in (5). This interaction term vanishes when 𝜌 = 0. In the
fourth term, 𝛽𝑦

𝑖
reflects the endogenous peer effects. The above structural equation implies

the following reduced form outcome:

𝑌𝑖 (𝑑1, 𝑑2) =
𝛼𝑖 (𝑑1) + 𝛽𝑦𝑖 𝜙 𝑗 (𝑑1)

1− 𝛽𝑦1 𝛽
𝑦

2︸                  ︷︷                  ︸
:=𝛼̃𝑖 (𝑑1 )

+
𝜙𝑖 (𝑑2) + 𝛽𝑦𝑖 𝛼 𝑗 (𝑑2)

1− 𝛽𝑦1 𝛽
𝑦

2︸                  ︷︷                  ︸
:=𝜙̃𝑖 (𝑑2 )

+ 𝜌
𝛼𝑖 (𝑑1)𝜙𝑖 (𝑑2) + 𝛽𝑦𝑖 𝛼 𝑗 (𝑑2)𝜙 𝑗 (𝑑1)

1− 𝛽𝑦1 𝛽
𝑦

2︸                                     ︷︷                                     ︸
:=𝜉 (𝑑1,𝑑2 )

+
(𝛽𝑤1𝑖 + 𝛽

𝑦

𝑖
𝛽𝑤2 𝑗)𝑊𝑖 + (𝛽𝑤2𝑖 + 𝛽

𝑦

𝑖
𝛽𝑤1 𝑗)𝑊 𝑗

1− 𝛽𝑦1 𝛽
𝑦

2︸                                         ︷︷                                         ︸
:=𝜷′

𝑖𝑾 𝑖

.

Thus (B.1) imposes for potential outcome to satisfy Assumption 1 and 3. The observed
outcome is generated as follows:

𝑌𝑖 = 𝑌𝑖 (0,0) +𝐷𝑖 (𝑌𝑖 (1,0) −𝑌𝑖 (0,0)) +𝐷 𝑗 (𝑌𝑖 (0,1) −𝑌𝑖 (0,0))

+𝐷𝑖𝐷 𝑗 (𝑌𝑖 (1,1) −𝑌𝑖 (1,0) −𝑌𝑖 (0,1) +𝑌𝑖 (0,0))

= (𝛼̃𝑖 (0) +𝜙𝑖 (0)) + (𝛼̃𝑖 (1) − 𝛼̃𝑖 (0))𝐷𝑖 + (𝜙𝑖 (1) −𝜙𝑖 (0))𝐷 𝑗

+ (𝜉𝑖 (1,1) − 𝜉𝑖 (1,0) − 𝜉𝑖 (0,1) − 𝜉𝑖 (0,0))𝐷 𝑗 + 𝜷′
𝑖𝑾𝑖 .

The actual parameter values are given as Table B.6.11

11The rest of parameters are set as follows. First, the parameters in potential outcome are (𝛽𝑦1 , 𝛽
𝑦

2 , 𝛽
𝑤
1𝑖 , 𝛽

𝑤
2𝑖) =
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Table B.6: Parameter Values

Individual (𝑖) 1 2

𝒎1-Direct Effect (𝛿𝒎1
𝑖

(0)) 64 49.14
𝒎1-Indirect (𝜃𝒎1

𝑖
(0) ) 36.57 32

𝒎1-Interaction (𝜁𝒎1
𝑖

) 10.24 8.96

Table Table B.7 shows the simulation results for this design. Overall, we have the similar
result as in Table 5. Considering MSE, all methods show little differences, but using the
first-stage estimator for 𝜔, and computing the instrument with the linear probability model
appears the most efficient. The inference based on the plug in standard error is asymptotically
valid.

B.3 Empirical Result with Nonlinear First-Stage

Table B.8: Make Deposit

𝒎1 𝒎1

Unit Effects R V R V

Female Direct
0.17∗∗∗

(0.05)
0.08∗∗

(0.03)
-0.03
(0.02)

Indirect
-1.11∗∗

(0.47)
0.03

(0.02)
-0.002
(0.03)

Male Direct
0.22

(0.42)
0.15∗∗∗

(0.04)
0.1∗∗∗

(0.04)

Indirect
-0.04
(0.04)

0.001
(0.03)

-0.15∗∗∗

(0.04)

Notes: The dependent variable is 1 if the individual made at least one deposit. “Direct” denotes the
local average treatment effects 𝐸 [𝑌𝑖 (1,0) −𝑌𝑖 (0,0) |𝐾𝒎

𝑖
= 1], and “Indirect” denotes 𝐸 [𝑌𝑖 (0,1) −

𝑌𝑖 (0,0) |𝐾𝒎
𝑗
= 1]. Plug-in clustered standard errors are reported in parentheses. ∗,∗∗ ,∗∗∗ denote the

significance levels at 10%, 5%, and 1%, respectively. The instruments are estimated by using probit
model in the first stage.

(0.5,0.25,1,0.5), 𝑖 ∈ {1,2}. Second, the parameters in the potential treatment generation are 𝝓𝑑
1 =

(−1.5,6,2,9,1)′,𝝓𝑑
2 = (−1.5,8,2,9,0.5)′. Third, the true means of random components in potential out-

come are 𝜶̄1(1) = [48,48,48,96,120], 𝜶̄2(1) = [40,40,40,80,100], 𝝓̄1(1) = [12,12,12,16,20], and
𝝓̄2(1) = [16,16,16,32,40], where the ordering is AT, SC, C, GC, NT. Lastly, 𝜶̄1(0) = 𝜶̄2(0) = 𝝓̄1(0) =
𝝓̄2(0) = 0.
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Table B.7: Monte Carlo Simulation

Use true 𝜔 Estimate 𝜔

G Probit Linear Probit Linear

2500 MSE 14.293 12.629 13.781 12.271
MAE 0.029 0.024 0.031 0.027

Cov. Rate 0.944 0.961 0.945 0.961

5000 MSE 6.506 6.12 6.406 5.989
MAE 0.027 0.022 0.021 0.015

Cov. Rate 0.948 0.959 0.948 0.96

10000 MSE 3.131 3.003 3.037 2.89
MAE 0.011 0.009 0.007 0.005

Cov. Rate 0.946 0.951 0.946 0.952

20000 MSE 1.482 1.363 1.461 1.339
MAE 0.005 0.006 0.003 0.004

Cov. Rate 0.951 0.961 0.95 0.959

Notes: This table presents simulation results for 𝐵 = 10,000 replications. Column 𝐺 denotes the
number of independent groups. The mean squared error (MSE) is calculated by

∑𝐵
𝑏=1∥𝛽𝑏− 𝛽0∥2/𝐵,

where 𝛽𝑏 = (𝛿1(0), 𝜃1(0), 𝜁1, 𝛿2(0), 𝜃2(0), 𝜁2)′ is the vector of estimates in the 𝑏th replication, and
𝛽0 = (𝛿1(0), 𝜃1(0), 𝜁1, 𝛿2(0), 𝜃2(0), 𝜁2)′ is the true vector of parameters. The actual parameter val-
ues are set by Table B.6. The mean absolute error (MAE) is calculated by

∑𝐵
𝑏=1

∑6
𝑘=1 |𝛽𝑘𝑏 −

𝛽0𝑘 |/(6𝐵). Coverage computes the minimum 95% coverage rate among the four estimates, i.e.,
min1≤𝑘≤6

∑𝐵
𝑏=11{𝛽𝑘𝑏−1.96𝑆𝐸 (𝛽𝑘𝑏) ≤ 𝛽0𝑘 ≤ 𝛽𝑘𝑏+1.96𝑆𝐸 (𝛽𝑘𝑏)}/𝐵. The first two columns (“Use

true 𝜔”) use the true propensity score Pr(𝒁𝑖 = 𝒛 |𝑿) for the weight 𝜔, while the last two columns
(“Estimate 𝜔”) estimate the propensity score and hence 𝜔. “Linear” and “Probit” denote that the
optimal instrument is estimated by the linear probability model and probit model, respectively.

Table B.9: Make Withdrawal

𝒎1 𝒎1

Unit Effects R V R V

Female Direct
0.05∗

(0.03)
0.04∗∗∗

(0.02)
0.27

(1.15)

Indirect
-0.004
(0.25)

-0.002∗∗

(0.0009)
0.01

(0.01)

Male Direct
0.45

(0.32)
0.02

(0.02)
0.05∗

(0.03)

Indirect
-0.02
(0.03)

0.01
(0.03)

0.52
(1.26)

Notes: The dependent variable is 1 if the individual made at least one withdrawal. “Direct” denotes
the local average treatment effects 𝐸 [𝑌𝑖 (1,0) −𝑌𝑖 (0,0) |𝐾𝒎

𝑖
= 1], and “Indirect” denotes 𝐸 [𝑌𝑖 (0,1) −

𝑌𝑖 (0,0) |𝐾𝒎
𝑗
= 1]. Plug-in clustered standard errors are reported in parentheses. ∗,∗∗ ,∗∗∗ denote the

significance levels at 10%, 5%, and 1%, respectively. The instruments are estimated by using probit
model in the first stage. 63



C Finer Classification of Compliance Types

If there exist multiple monotone pairs, compliance types can be divided into finer and disjoint
categories. Consider the monotone pairs 𝒎1 = ((0,1), (0,0), (1,1)), 𝒎2 = ((1,0), (0,0), (1,1))
and 𝒎3 = ((1,0), (0,1), (1,−1)) in Panel (b) of Table 3. For unit 1, the 𝒎2-complier is inter-
preted as either social complier (SC, or 𝒎1-complier) or complier (C, or 𝒎3-complier). Since
the events for unit 1 to be a 𝒎1-complier, and 𝒎3-complier are disjoint, we have

𝑃
𝒎2
1 (𝑻) = Pr(𝐾𝒎2

1 = 1|𝑻) = Pr(𝐾𝒎1
1 = 1|𝑻) +Pr(𝐾𝒎3

1 = 1|𝑻) = 𝑃𝒎1
1 (𝑻) +𝑃𝒎3

1 (𝑻).

It follows that

𝛿
𝒎2
1 𝑃

𝒎2
1 (𝑻) = 𝐸 [Δ1𝑌1(0) |𝐾𝒎2

1 = 1,𝑻] Pr(𝐾𝒎2
𝑖

= 1|𝑻)

= 𝐸 [Δ1𝑌1(0) |𝐾𝒎1
1 = 1] Pr(𝐾𝒎1

1 = 1|𝐾𝒎2
1 = 1,𝑻)Pr(𝐾𝒎2

𝑖
= 1|𝑻)

+𝐸 [Δ1𝑌1(0) |𝐾𝒎3
1 = 1] Pr(𝐾𝒎3

1 = 1|𝐾𝒎2
1 = 1,𝑻)Pr(𝐾𝒎2

1 = 1|𝑻)

= 𝐸 [Δ1𝑌1(0) |𝐾𝒎1
1 = 1] Pr(𝐾𝒎1

1 = 1|𝑻)

+𝐸 [Δ1𝑌1(0) |𝐾𝒎3
1 = 1] Pr(𝐾𝒎3

1 = 1|𝑻)

= 𝛿
𝒎1
1 𝑃

𝒎1
1 (𝑻) + 𝛿𝒎3

1 𝑃
𝒎3
1 (𝑻).

Therefore, we have the following relationship between parameters from different monotone
pairs:

𝛿
𝒎2
1 = 𝛿

𝒎1
1

(
𝑃
𝒎1
1 (𝑻)

𝑃
𝒎1
1 (𝑻) +𝑃𝒎3

1 (𝑻)

)
+ 𝛿𝒎3

1

(
𝑃
𝒎3
1 (𝑻)

𝑃
𝒎1
1 (𝑻) +𝑃𝒎3

1 (𝑻)

)
.

The (8) with respect to the monotone pair 𝒎2 can be written as

𝐸 [𝐼𝑇𝑇𝒎2
1 (𝑿) |𝑻] = 𝛿𝒎2

1 𝑃
𝒎2
1 (𝑻) + 𝜃𝒎2

1 𝑃
𝒎2
2 (𝑻)

= 𝛿
𝒎1
1 𝑃

𝒎1
1 (𝑻) + 𝛿𝒎3

1 𝑃
𝒎3
1 (𝑻) + 𝜃𝒎2

1 𝑃
𝒎2
2 (𝑻).
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