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Abstract

Recent empirical studies emphasize the importance of indirect, or spillover effects in
program evaluation. Most studies assume that the underlying network is exogenous,
fixed, or unaffected by the intervention. However, empirical evidence indicates that the
treatment can also have significant network effects. This paper studies the identification
and estimation of causal treatment effects while explicitly considering possible causal
changes in the network resulting from a program. The main finding is the decomposition
of the causal effects into two distinct components: the treatment effect when the network
remains unchanged and the effect when the treatment alters only the network structure
(network effect). This result enhances our understanding of policy/program mechanisms
by considering counterfactual scenarios where the network is either altered or remains
unchanged due to the treatment. The proposed method applies to both randomized ex-
periments and quasi-experimental designs with parallel trends. A estimation procedure
for causal effects and their decomposition is proposed, and its performance is evaluated
through Monte Carlo simulations. The methodology is illustrated using data from a pro-
gram offering savings accounts. The empirical results show that total direct effect is
small due to offsetting positive treatment effects and negative network effects.
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1 Introduction

Program evaluation is an important topic in empirical economics, typically involving the
estimation of causal effects of programs. These analyses are often based on the potential
outcome framework (e.g., Rubin (1974)) to define and identify causal effects, with the base-
line assumption of the Stable Unit Treatment Value Assumption (SUTVA). This assumption
excludes interference between units, defining the treatment effect as the causal impact of
an individual’s own treatment. However, as economic agents frequently interact with one
another, recent empirical evidence highlights the potential significance of spillover effects—

causal effects arising from others’ treatments—in program evaluations.

When spillover effects on outcomes exist, the potential outcome must be expressed as a
function of the entire treatment vector for all individuals. This creates significant challenges
for researchers, as defining causal parameters becomes more complex compared to SUTVA
settings. Furthermore, identifying meaningful parameters becomes increasingly difficult due
to the exponential growth in the number of potential outcomes as the number of individuals
increases. For example, if N individuals interact, the possible number of treatment assign-
ments profile and the potential outcomes is 2V. To address these challenges, studies often
adopt the constant treatment response (CTR) framework proposed by Manski (2013). This
approach assumes that an individual’s potential outcome is determined by specific summary
statistics derived from the treatment statuses of others, rather than the full treatment vector.
For example, an individual’s outcome may be determined by their own treatment status and
the number of treated friends, rather than the complete profile of treatments. Those summary
statistics are called exposures, and a spillover (or exposure) effect can be measured as the im-
pact of changes in an exposure value, which indirectly reflects changes in the treatment sta-
tuses of others. This exposure mapping approach significantly reduces the dimensionality of
the potential outcomes framework (e.g., Leung (2020, 2022), Vazquez-Bare (2023a, 2023b),
Aronow and Samii (2017), Bramoullé, Djebbari, and Fortin (2009), Forastiere, Airoldi, and
Mealli (2021), Auerbach and Tabord-Meehan (2021)).

While exposure mapping approach simplifies the analysis, it often assumes that the un-
derlying network structure is either unaffected by the treatment, exogenous, or remains fixed.
For example, let D; denote the treatment indicator for individuals i = 1,...,N, and let A;;

represent the indicator of link between individuals i and j (i.e., A;; = 1 if i and j are friends).



In this setting, exposure often refers to the number of treated friends, which can be ex-
N

pressed as ijl,j o

A;;D ;. Consequently, exposure generally depends on the network struc-
ture. If we assume that the network links A;; are also influenced by the treatment vector
D = (Dy,...,Dy), changes in exposure would reflect both changes in others’ treatment sta-
tuses (D; for j # i) and changes in the network links A;; driven by D. As a result, the
exposure effect becomes confounded by these two factors: others’ treatments and changes
in the network structure. Thus, addressing possible network changes within the exposure

mapping framework is challenging without additional assumptions.

The assumption of fixed or, exogenous network may hold in the short term when there
is insufficient time for the network structure to change. However, recent empirical studies
suggest that interventions can significantly influence the underlying network structure. For
example, Comola and Prina (2021) use experimental data from Nepal and find that provid-
ing savings accounts to households leads to changes in network degrees. Specifically, the
probability of being linked to other households with at least one treated member decreased
from 81% to 76%. Banerjee et al. (2024) analyze data from Karnataka, India, and a field
experiment in Hyderabad to investigate how exposure to formal financial institutions impact
their network density. Similarly, Dupas, Keats, and Robinson (2019) use experimental data
from Kenya, where households received free savings accounts, and observe that households
become less dependent on distant family members while being more supportive of neighbors
and friends in their village. These studies highlight the importance of considering network

effects in program evaluations.

This paper presents a method to identify and estimate the causal effect of a program,
accounting for the possibility that the treatment may induce changes in the network structure.
Additionally, this study decomposes the treatment (or spillover) effect into two components.
The first component examines the impact of the treatment when the network structure remains
fixed, while the second component assesses the effect of the treatment when it alters the
network structure only. If the treatment does not result in changes to the network, the second
component has no effect, and the first component corresponds to the conventional concept of
the treatment (or spillover) effect. In this framework, I define the second component as the
network effect and refer to the first component as the treatment (or spillover) effect, following

established conventions.

Causal changes in the network structure can be evaluated using the potential network. For



instance, let A;;(d) represent potential link indicator for individuals i and j, according to the
treatment vector d = (dy,...,dy). To describe the decomposition, consider an intervention
that shifts the treatment statuses of all individuals from d to d’. The overall treatment (or
spillover) effect measures the causal changes in outcomes resulting from both changes in the
treatment vector (d — d’), and the underlying network (A;;(d) — A;;(d’)). In this paper, the
(pure) treatment (or spillover) effect is defined as the causal effect of changes in the treatment
statuses (d — d’), while the network is fixed at A;;(d). The network effect, on the other hand,
is defined as the causal effect of changes in the network (A;;(d) — A;;(d’)), while treatment

statuses are fixed at d.

The proposed method is based on dyadic link formation and a linear potential outcome
assumption. Specifically, potential network links are determined solely by the treatment sta-
tuses of each pair, i.e., A;;(d) = A;;(d;,d;), and the potential outcome is modeled as a linear
function of the own treatment status and the number of treated/untreated friends, with an in-
dividual error term &;(d;) that depends only on the individual’s own treatment status. Further
assumptions about potential link formation (A;;(d;,d;)) and the distribution of the potential
outcome (g;(d;)) are specified by the experimental design of interest. This study explic-
itly considers two experimental settings. First, randomized experiments with post-treatment
period information, where both potential links and outcome errors are assumed to be indepen-
dent of the treatment (i.e., unconfounded). Second, quasi-experimental designs with parallel
trends, incorporating pre- and post-treatment information, where both potential links and

outcome errors are assumed to satisfy the no-anticipation and parallel trends assumptions.

An estimation procedure is proposed, and its finite sample performance is evaluated
through Monte Carlo simulations. The approach is also demonstrated using experimental
data from Comola and Prina (2021), which involves a program providing savings accounts
to households in Nepal. The empirical results indicate positive direct and indirect treatment
effects on consumption. However, the total direct effect is small due to the negative network
effect offsetting the positive treatment effect. This suggests that while opening a savings
account directly increases consumption, it may also reduce consumption by altering the net-
work structure, such as increasing the number of friends in this context. This decomposition
and interpretation go beyond the direct and indirect effect calculations presented in Comola
and Prina (2021).

The main contributions of this paper can be summarized in three key aspects. First, I pro-



pose a novel method for analyzing causal effects that accounts for causal network changes
within the potential outcome framework. Second, the method decomposes the causal effects,
providing a more detailed understanding of the mechanisms driving a program’s impact.
Third, the method is applicable to various experimental designs, including both random-
ized experiments and quasi-experiments with parallel trends, and it can be easily extended to
other experimental settings with additional conditions. Moreover, the proposed methods can
be viewed as a generalization of existing approaches. If the network remains unchanged, the
method reduces to a linear model of treatment effects with interference, as in Vazquez-Bare
(2023b), Leung (2020), or Aronow and Samii (2017). Furthermore, if there is no interference,
the method simplifies to the standard potential outcome model under SUTVA.

Related Literature

This study is closely connected to the literature on identifying and estimating causal effects of
a program when individuals interact with one another. Various studies address violations of
SUTVA by using the exposure mapping approach under randomized experiments (e.g., Leung
(2020, 2022), and Vazquez-Bare (2023b)). When treatment is endogenous due to imperfect
compliance, local average treatment effects can be identified (e.g., Vazquez-Bare (2023a),
DiTraglia et al. (2023), Hoshino and Yanagi (2023), Kormos, Lieli, and Huber (2023), Kang
and Imbens (2016), Blackwell (2017)). In cases where treatment is not exogenous such as a
quasi-experimental situation, studies use difference-in-differences approach (e.g., Xu (2023)
and Butts (2021)) or regression discontinuity design (e.g., Auerbach, Cai, and Rafi (2024)).
Since treatment assignments under interference can be viewed as multiple treatments, this
paper also relates to the challenges of analyzing multiple treatments (e.g., Frolich (2004),
Fricke (2017)).

Another notable approach to addressing interference is the design of experiments utilizing
double randomization, as proposed by Hudgens and Halloran (2008). This method involves
first randomizing treatment rates (saturation) across groups and then randomizing treatment
assignments within each group according to the specified rates. The variation in treatment
saturation provides an additional source of identification (e.g., Kang and Imbens (2016),
Blackwell (2017), Baird et al. (2018), DiTraglia et al. (2023), Sanchez-Becerra (2021), Imai,
Jiang, and Malani (2021), and Hoshino and Yanagi (2023)). Furthermore, some studies fo-

cus on optimizing experimental designs in such settings to maximize social welfare (e.g.,



Kitagawa and Wang (2023), Ananth (2021), Viviano (2024)).

While previous studies generally assume a fixed or exogenous network, Comola and Prina
(2021) explicitly address estimation of treatment effects accounting for network changes. The

authors propose a two-period linear-in-means model:

Yii=p1 ZAUOYJ‘I +B2 ZAAinjl +yD;+6; ZAUOD/ +6ZZAAiij +ei, (1)
T#i T#i T T

where Aiﬂ = Ajji/ 2 j=i Aijr represents the row-normalized link at time 7 € {0,1}, AA;; =
A;j1 — Ajjo 1s the first-difference of row-normalized network link, Y;; is the observed out-
come at time ¢, g;; 1s the individual error term, and D; is the treatment indicator. In this
model, both treatment and network structure are assumed to be exogenous in the sense that
El&i1|A1,A9,D] = 0. The authors estimate the coefficients using an instrumental variable
(IV) estimation strategy similar to that of Bramoullé, Djebbari, and Fortin (2009). And then,
direct and indirect effects are defined as the partial derivatives of the conditional mean of
the reduced-form outcome with respect to the treatment vector: dE[Y;;|D]/dD’. Their main
findings using an experimental data in Nepal suggest that indirect effects may be underesti-

mated if network changes resulting from the treatment are not considered.

This study differs from their paper in several key aspects. First, I introduce a potential
outcome and potential network framework to provide clear causal interpretations, whereas
their approach defines treatment effects as derivatives of a reduced-form outcome. Their
treatment effects are difficult to interpret as causal effects when the network is not exogenous
(i.e., when E[g;1|A,Ag,D] # 0), whereas I consider a more general situation that includes
the potential endogeneity of the network. Second, while their structural equation (1) suggests
that network changes may reflect time-varying effects, I explicitly model causal changes
in the network driven by treatment using potential networks. Lastly, the most significant
difference is that I decompose causal effects into two distinct components: the treatment
effect when the network is fixed, and the network effect, which captures the causal impact of
changes in the network alone. This decomposition allows researchers to determine the extent
to which causal effects are driven by network changes, providing a clearer understanding of

the underlying mechanisms that have yet to be explored in the existing literature.

This paper is organized as follows: Section 2 describes the setting, defines the parameters

of interest including the decomposition of causal effects, and addresses their identification.



Section 3 presents the estimation procedure. Section 4 evaluates the performance of the
proposed method through Monte Carlo simulations, and Section 5 provides an empirical

illustration. Section 6 concludes.

2 Model and Identification

In this section, I provide an overview of the model setting and define the key parameters of
interest. First, I discuss the response functions for both potential link and potential outcome.
Then, I introduce the main causal parameters, focusing on direct and indirect effects. The
direct effects capture how an individual’s treatment status affects their own outcome, while
the indirect (spillover) effects measure the impact of changes in other individuals’ treatment
statuses. Next, I propose a decomposition of these effects into two components. The first
component considers the impact when the underlying network remains fixed, which I refer to
as the treatment effect, as it aligns with the conventional concept of treatment effects in the
literature. The second component reflects the impact that comes exclusively from changes in

the network structure, which I refer to as the network effect.

2.1 Response Functions for Network Links and the Potential Outcome

Suppose there are G independent groups with N individuals in each group.! If we observe
data over two periods, let ¢ € {0,1} denote the time periods, where some individuals are
assigned to a treatment group after # = 0. In other words, ¢ = 0 represent the pre-treatment
period and = 1 is the post-treatment period. Let D;, € {0, 1} be an indicator showing whether
individual i receives the treatment, and D, = (D1, ..., Dy,) € {0, 1}V be the treatment vector.
We assume that there is no imperfect compliance. To simplify notations, I omit group index,

or time index, or both for the rest of this section when there is no risk of confusion.

Each individual interacts with others through an underlying network structure. Specif-
ically, let A;; € {0,1} represent the link between individuals ¢ and j, where there are no
self-links. That is, A;; = 1 if individuals i and j are linked (or friends), and A;; = 0 for all i.
Denote A as the N X N adjacency matrix with [A];; = A;;. The network can be either directed

'In this section, I assume a fixed group size, but this can be extended to allow groups to have different sizes
Ng, by considering every moment restrictions conditioning on the group size Ng.



or undirected. For each individual i, let Y; € R denote the outcome of interest.

Potential outcomes and potential links are expressed as functions of the entire treatment
vector. Let d € {0, 1}" represent a vector of treatment assignments for N individuals. Corre-
sponding to an assignment d, let A;;(d) denote the potential link between individuals i and

J, and Y;(d) represent the potential outcome for individual i.

Since there are 2" possible potential treatment assignments, defining and analyzing the
causal effect of interest becomes challenging, particularly when the number of individuals is
large. To address this issue, I first assume that the potential network links are formed based

on a dyadic model, as stated next in Assumption 1.

Assumption 1 (Dyadic Response on Potential Network Links). For each pair of individuals
(i,]), for any treatment assignments d,d’ € {0,1}", (i) ifd; = d;and d; = d}, then A;;(d) =
A;j(d’) with probability 1. Thus, by abusing notation, the potential link can be expressed as
A;j(d) = A;j(d;,d;) for any d = (d\,...,dn)’; (ii) Additionally, for all pairs (i, j) and for all
(d;,dj) € {0, 1}2, the following condition holds: E[A;;(d;,d;)|D] = E[A;;(d;,d;)|D;,D,].

Assumption 1-(1) states that each pair’s potential link is determined solely by their own
treatment statuses (d;,d;), and not by the treatment status of other individuals. For example,

Assumption 1 is satisfied under a dyadic link formation model, such as Graham (2017):
A,-J-(d):1{00+91di+62dj+u,-j>0}, (2)

where u;; includes both individual-specific, and pair-specific unobserved factors influencing
the link formation. In this model, the potential link A;; depends only on d;,d;, but not dj for
k ¢ {i,j}. Assumption 1-(ii) strengthens (i) by assuming that each pair’s observed treatment
statuses are sufficient for determining their potential link distribution. For example, in the
dyadic model above, it implies that: u;;|D ~ u;;|D;,D;.

The potential outcome is typically expressed as a function of the treatment vector d €
{0,1}. A conventional approach to handling potential outcomes under interference is by
using exposure maps or assuming a constant treatment response (e.g., Manski (2013)). If

there exists a function £(-) such that for any treatment vectors d,d’ € {0,1}", f(d) = f(d’)
implies Y (d) = Y (d’) with probability 1, then the function f(-) is called an exposure map.

The existence or specific functional form of an exposure mapping is unknown without



further restrictions. However, in some cases, it is possible to define an appropriate exposure
map for a potential outcome. For instance, if the network is anonymous or exchangeable,
only the number of treated and untreated friends would be relevant. Leung (2020) demon-
strates that assuming (i) local spillover, i.e., interference occurs only from neighbors within a
network distance of 1 or some fixed number, and (ii) exchangeability is equivalent to having
a correctly specified exposure map (d;, Q;(d), R;(d)), where d; is the individual’s own treat-
ment status, Q;(d) := 2.; A;j(d;,dj)d; is the number of potentially treated neighbors, and
R;(d) := X; Aij(di,d;)(1—d;) is the number of potentially untreated neighbors.? Therefore,
the potential outcome can be written as Y (d;, Q;(d), R;(d)) instead of a function of the entire

treatment vector.

To identify causal effects and their decomposition, I assume that the response function
for the potential outcome is linear in these exposures (d;,Q;(d),R;(d)), as stated next in

Assumption 2.

Assumption 2 (Linear Response on Potential Outcomes). For each individual i, let Y;(d) be
the potential outcome corresponding to d € {0,1}N. Assume that the potential outcome is

determined by the following linear response function:

Y;i(d) = o+ pid; + BrQi(d) + BuR;(d) + &;(d;),

where Q;(d) = yzl,j#Aij(di,dj)d,, Ri(d) = ;YZLJ.#Aij(di,d,)(l —d,), and &;(d) is the

potential individual error that satisfies E[&;(d)|D] = E[g;(d)|D;] ford e {0,1}.?

In other words, Assumption 2 is equivalent to assuming (i) local spillover, (ii) exchange-

ability, and (iii) additive separability of potential outcomes with respect to the exposures.

The parameter S; represents the effect of an individual’s own treatment d; when all links
and others’ treatments remain fixed. Thus, S; captures the direct effect of the own treatment.

Next, since Q;(d) represents the number of potentially treated neighbors, B7 captures the

2If A;j(d;,d;) denotes the potential row-normalized link, then Q;(d) and R;(d) represent individual i’s
potential fraction of treated and untreated neighbors, respectively.

3There is no further assumption on the unobserved error term &;(d;) here. However, without loss of gener-
ality, we can assume that the error term has a mean of zero and does not have an average treatment effect on the
treated (i.e., E[e;(1) —&;(0)|D; = 1] =0). Note that if E[e(d)] = u, then we can rewrite the model by replacing
Bo with By = Bo — i, and &;(d) with &;(d) = &;(d) — u. If E[&;(1) —&;(0)|D; = 1] = 7, then we can rewrite the
model by replacing B; with 3; = B; + 1, and &; with &;(1) = &;(1) — 7, &(0) = £;(0).



spillover (or exposure) effect from one additional treated neighbor. Similarly, Sy represents
the effects from one additional untreated neighbor. These parameters can be interpreted as
causal effects under various assumptions, particularly if the network links are unaffected by

the treatment.

However, an individual’s own treatment d; can also influence potential links {A;;(d;,d;) }i ;.
introducing an additional effect on outcomes driven by changes in the network links. I define
this type of effect as the network effect. Changes in the treatment status of other individual,
d;, can have similar network effects, which are formally defined below. The individual error
term &;(d) is assumed to be mean independent of the others’ treatment statuses given the

individual’s own treatment.

The observed outcome is given by ¥; = ¥;(D), and therefore Assumption 2 suggests that
the observed outcome can be expressed as a linear network model:

Yi=Bo+pBiDi+prQi+BuR; +é&;, 3)

where Q; = Q;(D), R; = R;(D), are the observed numbers of treated and untreated neigh-
bors, respectively, and ¢; = g;(D) = g;(D;). If the network is unaffected by the treatment,
i.e., Ajj(d;,d;) = A;;, then the response function reduces to a linear response model without
considering network change, commonly used in the literature (e.g., Cai, Janvry, and Sadoulet
(2015), Leung (2020), Forastiere, Airoldi, and Mealli (2021)). Moreover, when r = By =0,
which means there is no interaction, the model simplifies to a standard causal model without
interference. In particular, the model generalizes existing approaches to account for cases
where the individuals interact, and also when the network structure is influenced by the treat-

ment.

2.2 Data

The observed outcome and treatment consist of individual-level data {(Vl-i;d}i,g’ and the ob-
served network links consist of dyadic-level data {"Vizad}(,-, ).¢- For example, if we observe
only a single period of data, (Vig‘d = (Yig,Dijg), and (Vl%ad = A;j¢. The following assumptions

are made about the data distributions:

Assumption 3 (Distribution). (i) individual-level data (Vi’;d are identically distributed over i

10



and g, and independent over across g, (ii) dyadic-level data (Vi%ad are identically distributed

over all pairs (i, j) and g, and independent across g.

Assumption 4 (Overlap). For any (d,e) € {0,1}?, Pr(D; =d,D; = e) € (0,1).

Assumption 3 states that groups are identical and independent, but it allows unrestricted
dependence between individuals and pairs within each group. Moreover, this implies that
potential links and potential outcomes are also identically distributed. Consequently As-
sumption 3-(ii) impose additional symmetry on the network links: A;;(d,e) and Aj;(d,e)
are identically distributed for all (d,e) € {0, 1}2. Furthermore, if the network is undirected
(i.e., when A;; = Aj;), then we have A;;(d,e) ~ Aji(e,d) ~ A;j(e,d) for all (d,e) € {0,1}>.
Therefore, the potential link between two individuals depends on the number of treated in-
dividuals between them, i.e., A;; is fully determined by d; + d;. Assumption 4 is a standard

requirement that ensures the existence of the corresponding conditional distributions.

2.3 Causal Parameters and Decomposition

In this subsection, I define the key causal parameters and describe their decomposition. Con-
sider a scenario where each group contains 2 units (N = 2). Based on Assumption 2, the
potential outcome can be written as a function of an individual’s treatment, their neighbor’s
treatment, and their potential link: Y;(d) = y(d;,d;, A;;(d;,d;)). The effect of individual i’s

own treatment (d;) on their outcome can be decomposed as follows:

y(1,0,4;;(1,0)) — y(0,0,A4;5(0,0))
= y(laO’Al](lao)) _y(I’O’Al](O’O)) +y(1’0’Al](0’0)) _y(OsO’Al](O’O))

=Direct Network Effect =Direct Treatment Effect

The first term represents the direct network effect, capturing the impact of the treatment on
the outcome due to changes in the network links, while treatment status is fixed at (d;,d;) =
(1,0). The second term represents the direct treatment effect, which denote the effect of
changes in treatment status from (d;,d;) = (0,0) to (1,0), while the link is fixed at A;;(0,0).

Similarly, the effect of neighbor j’s treatment (d;) on individual i’s outcome is decom-

11



posed as:

y(0,1,A;5(0,1)) = y(0,0,A;;(0,0))
= y(ov laAl](O’ 1)) _y(o’ LAIJ(O’O)) +y(0’ LAIJ(O’O)) _y(O’O’Al](O’O))

=Indirect Network Effect =Indirect Treatment Effect

The first term captures the indirect network effect, reflecting how changes in neighbor j’s
treatment influence the individual i’s outcome by altering the network links from A;;(0,0) to
A;;(0,1), while their treatment status is fixed at (d;,d;) = (0,1). The second term represents
the indirect treatment effect, which measures the influence of j’s treatment on i’s outcome,

assuming their link is fixed at A;;(0,0).

The decomposition of direct and indirect effects allows us to separate the pure treatment
effects of the intervention from the network effects. The network effects capture the changes
in outcomes that are driven by change in the network structure, while the treatment effects

focus on the changes in outcomes when the network remains fixed at its untreated counterpart.

Remark 1. There is an alternative way to decompose the effects. For example, the indirect
effects can be rewritten as:

¥(0,1,4;;(0,1)) —»(0,0,4;;(0,0))
= y(o’o,Al](O’ 1)) —y(O,O,AU(O,O)) +y(0’ 1,Al](0’ 1)) _y(o’o,Al](O’ 1))

=Indirect Network Effect =Indirect Treatment Effect

In this decomposition, the network effect represents the causal impact of changes in the net-
work when both units remain untreated, while the treatment effect represents the causal im-
pact of the other’s treatment, assuming the links are fixed at the untreated counterfactual.
The distinction here lies in the baseline counterfactual scenario regarding treatment status
and network links. Researchers can choose which decomposition definition best suits their

empirical context, depending on the interpretation they find more insightful. O

In a general case with N individuals, indirect effect can be influenced by the treatment
status of all neighbors. However, the potential outcome is influenced by the treatment of
others primarily through the count of treated or untreated neighbors. Therefore, I focus on

the marginal impact of other’s treatment, specifically the impact of one additional treated

12



other.

Let {ey, ...,en} be the standard Euclidean basis in RV, where for each i, e; = (e;1,...,ein)’,
ei; =1, and e;; = 0 for all j #i. Define m(d,e) = E[A;;(0,0)|D;=d,D; =e] and H(d,e) =
E[A;j(d,e) —A;;(0,0)|D; =d,D; = e], for (d,e) € {0, 1}2.% Here, m(d,e) represents the
conditional probability of forming a link between i and j when both individuals are untreated,
while H(d,e) denotes the average treatment effect of treated (ATT) on links. The Direct
Effect on outcome is then expressed as Y;(e;) —Y;(0), where 0 = (0, ...,0) € RV, Assumption 2
provides the causal interpretation for the decomposition. In the counterfactual scenario where
no individual is treated (i.e., D = 0), the potential outcome is o + By 2. ; Aij(0,0) +£;(0). In
this scenario, if the links remain at A;;(0,0) and only individual i is treated, then the outcome
becomes Bo + B1 + Bu 2 Aij(0,0) + &;(1). Therefore, the causal change in individual i’s
outcome due to their own treatment is the difference B; + &;(1) — £;(0), which defines the
Direct Treatment Effect. Next, in the scenario where the links are still fixed at A;;(0,0), and
only individual i is treated (i.e., D = e;), if the links are changed from A;;(0,0) to A;;(1,0),
then the outcome becomes By + B+ By 2 ; Aij(1,0) +£(1). Therefore the causal effect on the
outcome from changes in links is the difference By 2. ; (A;;(1,0) — A;;(0,0)), and this defines
the Direct Network Effect. Consequently, the direct effect is the sum of direct treatment, and

direct network effects as follows:

N

Yi(e)=Yi(0) = Br+e()-(0) + Bu D (45(1,00-45(0,0) )
— j=1,j#i
Direct Effect Direct Treatment Effect
Direct Network Effect

The Average Direct Effect () is defined as the conditional expectation of direct effect
(Y;(e;) —Y;(0)) given D = e;, and it is given by the sum of the conditional expectations of
direct treatment effect, and direct network effect, respectively. The conditional expectation
of direct treatment effect is simply given by 8;.° Next, note that for the summand in direct
network effect, E[A;;(1,0) - A;;(0,0)|D =e¢;] = E[A;;(1,0) - A;;(0,0)|D; =1,D; =0] =

H(1,0) by Assumption 1. Therefore, we have the decomposition of average direct effect 7”

4If the network is undirected, then A;j(d,e) ~ Aji(e,d) for all (d,e) € {0,1}?, resulting in H(1,0) =
E[A;;(1,0)-A;;(0,0)|D;=1,D; =0] = E[A;;(0,1)-A;;(0,0)|D; =0,D; = 1] = H(0,1).

>As stated by Assumption 2, the individual error term has no average treatment effect on treated (ATT)
without loss of generality: E[g;(1)—&;(0)|D =e;] = E[g;(1)—&;(0)|D; =1] =0
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as follows:®

P’ =E[Yi(e)-Y:(0O)ID=e;] = B+ Pu(N-1H(1,0).
~——

Here, 7P7 refers to the Average Direct Treatment Effect representing the impact of one’s
own treatment when the network is fixed. On the other hand, 72" denotes the Average
Direct Network Effect, capturing the effect of changes in links driven by one’s own treatment.
Note that the average direct network effect 7V depends on the number of individuals in the
group. This is because an individual’s treatment affects all potential links associated with
them. H(1,0) represents the causal effect on the probability of forming a link when the
individual is treated, and thus, (N —1)H(1,0) measures the expected increase in links due to
the individual’s own treatment. Therefore, when N is large, the individual is more likely to

gain more connections as a result of the treatment.

Similarly, the Indirect Effect on the outcome is expressed as Y;(e;) —Y;(0). To interpret
this, consider a counterfactual situation where no individual is treated (i.e., D = 0), where the
potential outcome is given by o + By A;;(0,0) +&;(0). In this scenario, if the link remains at
A;;(0,0), and only individual j is treated, the outcome becomes By + BrA;;(0,0) + &;(0).
The difference (Br — By)Ai;(0,0) defines the Indirect Treatment Effect. Furthermore, in
the situation where individual j is treated, but the link remains at A;;(0,0), if the link
changes to A;;(0,1), the potential outcome becomes Sy + frA;;(0,1) +&;(0), and the dif-
ference Br(A;;(0,1)—A;;(0,0)) defines the Indirect Network Effect. Thus, the indirect effect
is the sum of the indirect treatment effect and the indirect network effect, expressed as fol-

lows:

Yi(e;)-Y;(0) = (Br—PBu)Aij(0,0) + pBr(A;(0,1)-A;;(0,0)) &)
———
Indirect Effect Indirect Treatment Effect Indirect Network Effect

The Average Indirect Effect (r') is defined as the conditional expectation of the indirect

This decomposition remains consistent with another expression of the direct effect. Under the coun-
terfactual scenario where D = e; (i.e., D; =1 and D; = 0 for all j # i), the potential outcome is B +
Bu Zj# A;j(1,0) +¢&;(1). If the links are fixed at A;;(1,0), but individual 7 is untreated, the outcome becomes
Bu + X4 Aij(1,0) +&;(0). Therefore, the causal effect of individual i’s own treatment on the outcome is again
the difference B; + &;(1) — &;(0), and the remaining term represent the direct network effect.
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effect (Y;(e;) —Y;(0)) given D = e}, and it is the sum of the conditional expectations of the
indirect treatment effect and the indirect network effect. Specifically, E[A;;(0,0)|D =¢;] =
E[A;;(0,0)|D; =0,D; = 1] =m(0,1), and E[A;;(0,1) - A;;(0,0)|D =e;] = E[A;;(0,1) -
A;;(0,0)|D; =0,D; = 1] = H(0,1) by Assumption 1. Consequently, we can decompose the

average indirect effect ! as follows:

7{1 c = E[Yz(ej) —YZ(O)lD = eJ] = (ﬁT_ﬁU)m(O» 1) + ﬁTH(O’ 1) (6)
| —

Here, /T and 7N represent the Average Indirect Treatment Effect and Average Indirect Net-
work Effect, respectively.

As discussed in Remark 1, there is an alternative expression with a different interpretation
for the indirect effects when considering a different comparison of counterfactual scenarios.’
However, the preceding argument regarding identification and estimation remains the same
for this alternative expression. Therefore, we use the definition in (6) for the decomposition
of indirect effects.

DT’ﬂ.DN’

ﬂ.IT,ﬂ.IN):

In summary, the parameters of interest are x := (7
Pl =gy, 7PN =py(N-1H(1,0), ='"=(Br-Lu)m(0,1), =V =prH(0,1).

Based on the linearity of the outcome response function (Assumption 2), for any d,d’ €
{0, 1}N , direct or indirect effect and their decomposition can be similarly defined. For ex-
ample, if d represents the situation where individual i is untreated, while N7 other indi-
viduals are treated, and d’ is the same situation except that individual i is treated, then
E[Y:(d") - Y;(d)|D = d’] defines an average direct effect 7P, and in this comparison, we
have 7T = B;, and 7Y = (Br Ny + By(N —1—N7))H(1,0). The definition of the decompo-

sition can vary depending on which comparison is most relevant in a given empirical context.

"For the indirect effect, the decomposition varies depending on the counterfactual scenarios being com-
pared. Instead of the scenario where individual j is treated and the link is fixed at A;;(0,0), now consider a
different counterfactual where individual j is untreated but the link is fixed at A;;(0,1). Comparing the po-
tential outcomes when D = e; and this new counterfactual scenario, we obtain an indirect treatment effect of
(Br —Bu)A;i;j(0,1) and an indirect network effect of Sy (A;;(0,1) — A;;(0,0)). Intuitively, the term S7 — By
captures the difference in the marginal effect of individual j’s treatment when he is linked to individual i. Thus,
when we fix the link at A, for example, (87 — By)A represents the indirect treatment effect. Additionally, when
individual j is untreated, treated, the effect of changing A;; from 0 to 1 is By, Br, respectively.
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However, it is important to note that once we identify the outcome coefficients 8 and the
conditional distribution of potential links, specifically m(0,1), H(1,0), and H(0, 1), the de-

composition can be recovered regardless of which situations are being compared.

2.4 Identification

This section discusses the identification of causal effects and their decomposition as defined
in Section 2. First, I address the case where only the post-treatment period data are observed,
but the treatment is exogenous (i.e., randomized experiments). Then, I discuss the case where
data are observed over two periods ¢ € {0, 1}, with = 0 as the pre-treatment period and ¢ = 1
as the post-treatment period, where the treatment satisfies both the parallel trends and no-

anticipation assumptions.

In both cases, we have two types of data: (i) individual-level data and (ii) dyadic-level
data. Identification involves using both types. First, by using dyadic-level data that include
observed links, the conditional expectations of potential links are identified as the coefficient
¢ from a dyadic regression on links. Second, the coefficients S, 87, By in the outcome model
(3) are identified using individual-level data. If the network is exogenous, the coefficient
P can be identified using the information of observed network and treatment. Specifically,
in (3), if E[g;|A,D] = 0, then all regressors in (3) are exogenous, and the coefficient from
regression of Y; on (1,D;,Q;, R;) recovers . However, I consider possible endogeneity of
network links. For instance, if the links are formed by the dyadic model (2), and the dyadic
error term u;; in (2) is correlated with the individual error term &; in (3), then even if the
treatment is randomly assigned, the network is endogenous and the aforementioned regres-
sion using the observed network will not recover the outcome coefficient . Instead, I use
predicted network E[A;;|D] from the first-step dyadic regression to recover the coefficient
S in the outcome regression.® Lastly, causal effects and the decomposition are recovered by

the combination of £ and B.

8This strategy is often employed in the literature to deal with endogenous network. See, for example,
Kelejian and Piras (2014), Konig, Liu, and Zenou (2019), Lee et al. (2021)
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2.4.1 Identification under Randomized Experiment

Consider situations where the program is designed to randomly assign the treatment, and we
have dyadic-level data {(Vl.]].)yad} = {A;;}, along with individual-level data {V/"} = {(D., Y;)}.
In this case, both the individual error term in the outcome response function and potential

links are independent of the treatment, as stated as follows:

Assumption 5 (Randomized Experiment). The treatment is exogenous: (i) E[&;(d)|D;] =0
fOl’ all d € {0, 1},‘ (ii) E[A,'j (d,‘,dj)|D,',Dj] = E[Aij(di,dj)] fOY‘ all (di,dj) € {0, 1}2.

The identification process consists of three steps. In the first step, define the dyadic re-
gressor vector as W;; = (1,D;,D;,D;D;)" € R*. The conditional exepctation of links A;;
given D;,D; is then given by a saturated regression E[A;;|D;,D;] = W; e Notice that if
Pr(D;=D;) <1, then E[W;;;W; ; g] is nonsingular and the coefficient ¢ is identified via least
squares estimand. Define A(d,e) = E[A;;|D; =d,D; = e]. Then, the coefficient { recovers
the following:

Q1 A(0,0)
é,: §2 _ %(1’0)_%(0’0) ) (7)
3 A(0,1) - A(0,0)

) \A(1,1)=A(1,0)-A(0,1) + A(0,0)

Moreover, by Assumption 5, A(d,e) = E[A;j|D; =d,D; = e] = E[A;;(d,e)]. Therefore,
(2 = H(l,O), {3 = H(O, 1), and {1 = m(O, 1).

In the second step, recall that from (3), the conditional expectation of observed outcome

is given as:
E[Y]|A,D] = Z;B+E]ei|A, D],

where Z; := (1,D;,Q;,R;) and B = (Bo,B1,Br,Bu). Here, even though the treatment is ran-
domly assigned, it can be E[g;|A, D] # 0 because the network is possibly correlated with the
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individual error term g;. Instead, by Assumption 5, we can write:

E[Y;|D]=E[Zi|D]'B
= (1,D;,E[QiID],E[R;|D])'B

’

1.D;, Y  E[A;IDID;, ) E[A;ID1(1-D))| B
J J ) (8)
B

LDy, Y (W)Dy, > (W) (1-D;)
J J

= (L,D;,0i({).Ri({))' B
:Zi(g)/ﬂ’
where Q;() :=2;(W;;{)D;, Ri({) := X ;(W[;8)(1-D;), and Z;({) := (1, D;, Qi({), Ri(4)).

Note that the fourth equation is by Assumption 1 and from the first-step dyadic regression:
E[A;|D] = E[A;|Di,D;] =W,§.
The outcome coefficient B can be recovered by the coefficient of a regression E[Y;|D] =
Z;({)' B, once ¢ is known.
Then, in the last step, we can recover the decomposition & from By, Br, Bu, (> = H(1,0),

{3=H(0,1), {; =m(0,1). Proposition 1 formally states this identification procedure.

Proposition 1 (Identification with Randomized Experiment). Suppose Assumptions 1-5 hold.
Define W;; = (1,D;,D;,D;D;) € R*, and Z;({) = (1,D;,0:({), Ri({)) € R*, where Q;({) =
S, (Wi,0)D,, and Ri(¢) = £,;(W},{)(1-D;). Then:

(i) Inadyadic regression E[A;;|D] = W;jg“, the coefficient { is given by { = B;VI E[W;;A;]
provided that By := E[Wl-jng] is nonsingular (i.e., D; # D ; with probability 1);

(ii) The conditional expectation of outcome is given by E[Y;|D]| = Z;({)'B, and the co-
efficient B = (Bo,B1,Br,Pu) is given by B = B?E[Zi({)Yi], provided that Bz :=
E[Z;({)Z;({)’] is nonsingular;

(iii) The decomposition of the causal effects is given by m = (aPT, 7PN 7T 7IN) with:
aPT = g, 1PN = (N - 1)Bup, 7' = (Br - Bu) &1, and n'™ = Brés.
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In this case, because the treatment is independent of the potential outcome, the causal
effects and their decomposition in this case are interpreted as the average direct/indirect treat-

ment/network effects.

2.4.2 Identification with Parallel Trend

Next, I examine cases where the treatment may not be random, but pre-treatment information
is available. We observe dyadic-level data {(Vilj)yad} = {(Aijo,Aij1)}, and individual-level
data {(VL.I“d} ={(D;,Yi0,Yi1)}, where A;;; and Y}, denote the observed link and outcome in
period ¢ € {0, 1}, respectively. Let &;(d) represent individual i’s error term, as defined in
Assumption 2, at period f € {0, 1}, and A;;;(d, e) be the potential links of pair (7, j) at period
t € {0,1}. Additionally, let B8, = (Bos, Bt Bre, Bur) represent the outcome coefficient at ¢ €
{0, 1}. Similarly denote Q;;, R;;, Qi (d), R;;(d) as their respective values at ¢t € {0, 1}.

In this case, identification relies on a difference-in-differences approach. Let A denote
the first-difference operator, i.e., for a random variable K;, AK = K| — Ky. The following
assumptions are required to ensure parallel trend and no-anticipation in potential links and

the potential outcome:

Assumption 6 (No Anticipation). (i) E[£,0(0)|D; = 1] = E[&io(1)|D; = 1] for each individ-
ual i; (ii) E[A;jo(d,e)|D; =d,D; =e] = E[A;;0(0,0)|D; = d,D; = e], for each pair (i, ),
and for all (d,e) € {0,1}2. (iii) B1o = 0 and Bro = Buo.

Assumption 7 (Parallel Trend). (i) E[Ag;(0)|D; = 1] = E[Ag;(0)|D; = 0], for each individual
i; (ii) E[AA;;(0,0)|D; =d,D; =e] = E[AA;;(0,0)|D; =0,D; = 0], for all pairs (i, j) and
forall (d,e) € {0,1}>. (iii) Buo = Bu1.

Assumption 6 ensures that there is no-anticipation of the treatment at the pre-treatment
period. Since no individual is treated at r = 0, we can think of &;yp = £;0(0) with probability
1, and thus Assumption 6-(i) holds.® By the same argument, Assumption 6-(ii) holds when
Aijo = A;jo(0,0) with probability 1.

Assumption 7 is the key identifying assumption for a difference-in-differences estimand.
For instance, in the identification of H(d,e) := E[A;j1(d,e) — A;j1(0,0)|D; =d,D; = e], the

Note that Assumption 6-(i) holds by construction of individual error term that it does not have ATT.
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first term is directly observed, while the second term remains counterfactual. Assumption 7-

(i1) recovers this counterfactual term by exploiting the exogenous parallel trend.

Furthermore, Assumptions 6 and 7, ensure both no-anticipation and parallel trends in the
potential outcome. First, by Assumption 6-(i), we have E[g,0(d;)|D; = d;] = E[&,0(0)|D; =
d;] for d; € {0,1}. Therefore, for any d € {0,1}", we can write:

E[Yio(d) =Yio(0)|D =d] = Brod; + BroE[Qio(d)|D = d] + fuoE[Rio(d) — Rio(0)|D = d].

By Assumption 6-(ii), we can show that E[R;o(0)|D = d] = E[Rio(d) + Qi0(d)|D = d].
Therefore, the parametric restriction in Assumption 6-(iii) guarantees no-anticipation of the
potential outcomes, i.e., E[Yio(d)|D = d] = E[Yio(0)|D = d] for all d € {0,1}". Next, As-
sumption 7-(iii) implies AY;(0) = ABo + Bu 2.; AA;;(0,0) + Ag;(0). It follows that:

N

E[AY,(0)ID =d) = Ao+ By ) E[AA;(0.0)ID = d]+E[Aeir (0)D; = di],

1,j#i

N]

E[AY,(0)[D =0] = ABo+By ). E[AA;(0,0)|D = 0]+ E[As; (0)|D; = 0].
j=1.j#i

]:

Therefore, Assumption 7-(1), (i1) imply that the parallel trend holds for the potential outcomes

as well.

Similar to the identification procedure under exogenous treatment, in the first step, the
coefficients §; = ({11,421, {31,{s) and & in dyadic regressions E[A;;|D;,D;] = W;j{,, and
E[AA;j|D;,D;] =W; ;& are identified when D; # D ; with positive probability. Here, & = AJ

is the difference-in-differences coefficient, and in particular, the second and the third elements

&) _
&3

The last equation is by Assumptions 6-(ii) and 7-(ii). Moreover, by Assumption 7-(ii),
m(0,1) := E[A;;1(0,0)|D; =0,D; = 1] = E[A;0(0,0)|D; =0,D; = 1]+ E[AA;;(0,0)|D; =
0,D; =0], where the first term is E[A;;o|D; =0,D; = 1] = {30+ {10 by Assumption 6-(ii), and
the second term is identified by &; = {11 — {19. Therefore, m (0, 1) is recovered by {39 + {11.

identify:

E[AA;j|D;=1,D; =0] - E[AA;|D; =0,D; =0]\ _(H(1,0)
E[AA;j|D;=0,D; =1]-E[AA;|D; =0,D; =0]) \H(0,1)]
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Under Assumptions 1-4, 6, and 7, the first-differenced observed outcome is given by
AY; = ABo+BnDi+Pri1Qin +Pui (Rin — Sio) +Aei = X[+ Aey, )

where Sio = X; Aijo » Xi = (1,D;,Qi1, Rit = Sio) » and B = (ABo, B11,Br1,Bu1). In this case,
because the treatment is not exogenous, the conditional expectation of the last term is not
trivially zero. By Assumption 2, E[Ag;|D] = E[Ag;|D;]. Using Assumptions 6-(i) and 7-
(ii), we have E[Ag;|D; = 1] — E[Ag;|D; =0] = E[g;1(1) —&;1(0)|D; = 1] = 0, where the last
equality is by construction of individual error term. This implies that E[Ag;|D;| = E[Ag;] =

0. Then, similar to the derivation in (8), the conditional expectation of (9) can be written as:
E[AY;|D] = E[X;|D]'B = Xi(§)'B, (10)

where { = ({l]’glz),’ Xl(g) = (laDi’ Qil (41)7Ri1 ({1) _SiO(‘:O))’ and Qil (é(l)’Ril (gl),SiO(§O)
are those values replacing E[A;;|D] as W ¢;. Subsequently, B is identified as a coefficient
of (10).

In the last step, the decomposition 7 is recovered from By, 871, Bu1, &2 = H(1,0), & =
H(0,1), and {30+ {11 = m(0,1). Proposition 2 formally establish identification in this case:

Proposition 2 (Identification with Parallel Trends). Suppose Assumptions 1-4, 6, and 7 hold.
Define Wij = (1,D;,D;,D;D;) € R*, and X;({) = (1,D;,0:11(£ 1), Ri1 (1) — Sin(£p)) € RY,
where § = (£,481), Qin(§1) = X;(W;§1)Dj, R (&) = X;(W},:£) (1= D), and Sio(&) =
Zj(W;j{O). Then:

(i) In dyadic regressions E[A;j;|D] = W;J.{, for t € {0,1}, and E[AA;j|D] = Wl’.jf, the
coefficients {, and € are given by {, = B;VIE [Wi;A;j] and & = AL, provided that By :=
E [Wile’.j] is nonsingular (i.e., D; # D j with probability 1),

(ii) The conditional expectation of differenced outcome is given by E[AY;|D] = X;({)'B,
and the coefficient B = (ABo,B11,Pr1,Bu1) is given by B = B}]E [X;(£)AY;], provided
that By := E[X;({)X:({)'] is nonsingular,

(iii) The decomposition of causal effects is given by m = (nPT, 7PN 7T 7!N) with PT =
B, 7PN = (N = DBuiés, 7' = (Br1 = Bui) (Lo + 1), and 7' = Brié;.
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In this case, the causal effects and their decomposition are interpreted as the average

direct/indirect treatment/network effects of treated (ATTSs).

Remark 2 (Identification with a Fixed Network). If links are not affected by the treatment,
then H(1,0) = H(0,1) = 0. Thus, there are no network effects in either direct or indirect
effects. The estimation of outcome coefficients and direct and indirect treatment effects re-

mains valid. O

Remark 3 (Identification without Interactions). If 7 = By = 0 in the outcome response
model, then there are no indirect effects and the direct network effect, i.e., 7PN = 7!T =
7N = 0. In this scenario, the direct treatment effect is identified by the difference-in-means
in the settings of Proposition 1, and the canonical difference-in-differences in the settings of

Proposition 2. O

3 Estimation and Inference

In this section, I propose estimators for the parameters identified in Section 2.4 and the de-
composition defined in Section 2. Since all identification arguments are constructive, by
using conditional expectation, the linear parameters are estimated by least-squares. Hence,
the estimation procedure is straightforward but requires three steps. For each estimator, clus-
tered standard errors can be used to conduct inference, taking into account the dependency

within groups.

3.1 Estimators

In the first-step, coefficients ({ under randomized experiment setting, or £, {, under quasi-
experiment setting) in dyadic regressions of links are estimated. Subsequently, the outcome
coefficient B is estimated in the second-step, by using the first-step estimates. Finally, the
decomposition of causal effects 7 are estimated in the third-step, by using the estimates in

the first two steps.
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3.1.1 First-Step Estimators

Randomized Experiment Setting: We observe the dyadic links {A;j¢}(; j)¢, and recall that
Wiie =(1,Dig,Djg,DigD;,)" is the dyadic regressor for a pair (7, j) in group g. The coeffi-

cient of a dyadic regression E[A;j,|D] = { 1s estimated by the following least squares

ug
estimator:

-1
G

G
IZ Z WiieWie éz Z WijeAijg |-

g=1(i,j):i#] g=1(i,j):i#j

Quasi-Experiment Setting: We observe the dyadic links at both pre- and post-treatment
periods {(A;jog, ,-jlg)}(l- ). The coefficients of a dyadic regressions E[A;j|D] = th{f

and E[AA;j4|D] = & are estimated by the following least squares estimators:

ng
G 7', @
' EZ Z WngW:]g EZ Z WijeAijig | »
| g=1 (@))% | | e=lG#)
G B G
f: EZ Z WngW;Jg EZ Z W[ngAijg .
g=1(i,j):i#j ] g=1(i.j)i#j

3.1.2 Second-Step Estimators

Randomized Experiment Setting: We observe the individual-level treatment status and out-
come {(D;,Y;)}i ¢, and first-step estimate of conditional mean E [A,-MD il =W jZ‘ . The
regressor is constructed by Z;, &) =(1, Diq, Q,-g(f), R,-g(f)) for each individual i in group g.
The coefficient of the outcome regression E[Yio|D] = Z;4( £Y B is estimated by the following

least squares estimator:

G N
ZZ 2o D2 @ | |53 2@V,

G N
g: i=1 g=1 i=1

Quasi-Experiment Setting: We observe the individual-level treatment status and outcomes

at pre and post treatment periods {(D;,, Y04, Yi1¢) }i¢» and first-step estimate of conditional
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mean E[A;j¢|Dig,D el = W;jf,’,, t € {0,1}. Denote § = ({(,{})" and l = (26,21)’. The re-
gressor is constructed by Xig(Z) = (1,D,~1g,Q,~g(21),R,-1g(21) —Siog(g‘o)) for each individual
i in group g. The coefficient of the outcome regression E[AY;,|D] = X ig(Z )’ B is estimated

by the following least squares estimator:

-1
N

) 1 G N . . 1 G X
B=|52. 2 Xu@Xu@)| |50 ) Xu(Q)AYy|.

g=1i=1 g=11i=1

3.1.3 Estimator for the decomposition &

Lastly, the decomposition 7 is estimated using a plug-in estimator.

Randomized Experiment Setting: 7 = (,él (N-1Dpsl> (Br-Bu) Brfg)

Quasi-Experiment Setting: 7= (B (N-DBvés (Br-Pu)so+bn) frés)

Remark 4 (Estimation with Covariates). If all the identifying assumptions hold conditional
on a set of covariates, the inverse probability weighting method proposed by Abadie (2005)
can be applied in identification arguments. In this case, estimators using the corresponding

propensity score approach can also be applied.O

3.2 Inference

Since the proposed estimators are least squares estimators for projection coefficients, standard
large sample theory can be applied. In this section, I consider large number of independent
groups for the asymptotic properties. However, when the underlying network is sparse, we
can obtain the same result considering both large number of groups or individuals with addi-
tional restrictions. Let “—” and « 4 denote convergence in probability and in distribution,
respectively. First, Proposition 3 summarizes that the ¢-ratios for the estimators in each step

are asymptotically normal.

Proposition 3. Suppose Assumptions 1-5 hold, and let {*, B*, and n* be true values of

parameters. If (i) By := E[Wl-ng;jg] is nonsingular; (ii) Bz = E[Z;,({*)Zi($*)'] is
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nonsingular; (iii) E[Yi‘;] < oo. Then, (Z,B,%) RN (C*,B*,n*) and
V- 1PNG (b - b*) -5 N(O,T),

for b € {£,B,nt}, where Vy, is a plug-in estimator of the asymptotic variance of b. Let V, =
{(Dig.Yig),(Ajjg, Wijo) : Vi,Y(i, J)} be group-level data. The influence functions of {, B are
given by
1
. p-1 ’
Ui (Ve.{) = By NN-D D Wije(Aijg=Wi,,0),
(i,)):i#]

Up(Ve, & B) i= B |Zig(O) (Yig = Zig($) B) — C v e (Ve )],

where C; := E[Z;o({*)V(Zig(F) BY)]. And the influence function Y (Ve, ¢, B) of 7 is
given by:

wﬁ,Z((Vg, {’ﬂ)
(N=Dpa(Ve. $. B + B 2(Ve, §)
VB3 (Vs & B) = ¥pa(Ves £.B)) £ + (B = By)e (Vi O |
Y3 (Ve, &, B S +Biwe3(We, &)

where Yp i (-) denote k-th element in vector Yy (-) for b € {{,B,m}. Lastly, Vg, \7'3, Vx are
sample variance-covariance matrices of Yz (Vy, 0), vp(Vs, B, Ux (Vs, 2. PB), respectively,

and V1% denote a square root matrix of V='.

Since A;jq, Djg are indicator variables, the boundedness of the moment £ [Yl.‘;] is suffi-
cient to apply the law of large numbers and the central limit theorem. Proposition 3 implies
that the decomposition & has an asymptotic normal distribution with zero mean and asymp-
totic variance E [ (Vg {*, B )Wr(V,. {*, B*)’]. The plug-in standard errors are computed
as the square root of the diagonal elements of the variance of the empirical influence function
w,,((Vg,Z' ,B), which is consistent with the asymptotic variance and therefore valid asymp-
totically. Furthermore, the asymptotic variances of £ and 8 are given by the variances of
Ye(Vg, L), and yp(V,, ™, B*), respectively. The plug-in standard errors for 8 and ¢ are
defined similarly.

The limiting distribution of estimators in a quasi-experiment setting with parallel trends
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can be similarly established, and as summarized in Proposition 4:

Proposition 4. Suppose Assumptions 1-4, 6, 7 hold, and let {F, £€*, B*, and n* be true values
of parameters. If (i) By := [W,]gWUg] is nonsingular; (ii) Bx := E[X;o({*) Xi0(£%)'] is
nonsingular; (iii) E[Yl.‘t‘g] < oo fort € {0,1}. Then, (Z,,f,ﬁ, 7) 2, (&F, &%, B*,n*) and

VNG (b -b*) -5 N(O, 1),

Where b € {509§Ia§9ﬂ9n}' Let (Wg = {(AijOg,Aijlg, Wijg), (Dig,YiOgaYilg) : VI,V(Z,])} be
group-level data, and denote { = ({,,{")". The influence functions of {,, &, B are given by

Ui (Ve dy) = BWIN(N 1)) Z Wijg(Aijig = ljggt)
(0.)):i#]
1
lﬁg((Vg,«f) W N(N )(l;iiWijg(AAijg ljgf)

Up(Ve, £, B) =B, [Zig({)(AYig— Zig()'B) — C1t0 .1 (Ve £1) = C b2 (Ve )]
where Cg, = E[ X ({*)V¢,(Xig(£*)' B)]. And Yx(Vy, ¢, B) is defined by

W2 (Ve, &, B)
(N = DYpa(Ve. & BIES +Brtre (V. €)
(Wp3(Ver L. B) = Wpa( Ve L. B)) (G + E1) + (BE = BY) (W03 (Ve ) + 04,1 (Ve ) |
Yp3(Ve. &, BES + Bivres(Ve, £)

where Yy 1 () denote k-th element in vector Yy (-) for b € {{,B,m}. Lastly, Vg,t,\z_g, \7'3, Vx
are sample variance matrices of Yz, (Vg, Z), Ve ((Vg,é), w(Vs, Z.PB), U (Ve Z,B), respec-

tively, and V~"? denote a square root matrix of V".

The baseline argument is the same as in Proposition 3 since all regressors are similar.
Note that £ represents the difference-in-differences coefficient, which captures the average
treatment effect on treated (ATT) for links, and is directly used to compute 7. Once again,

inference based on plug-in clustered standard errors remains asymptotically valid.

26



4 A Monte Carlo Study

To examine the finite sample performance of the estimators introduced in Section 3, I conduct
simulations using data generated under the assumptions outlined in Section 2, across various

sample sizes (number of groups).

First, the treatment indicators D;, are generated from a Bernoulli distribution with a suc-
cess probability of Pp = 0.5. Links and outcomes are then generated under two different

settings: (i) a randomized experiment, and (ii) a quasi-experiment with parallel trends.

Design 1: Randomized Experiment

First, define Iy(d,e) := (1,d,e,de)@ = 61 + 6,d + 03¢ + O4de as potential single index. The
potential link of pair (7, j), given treatment statuses (D;, D ;) = (d, e) is generated by a binary
response A;;(d,e) = 1{l¢(d,e) > u;;}, where u;; follows a standard normal distribution. Let
®(-) be the cdf of standard normal distribution. The mean and the average treatment effect

(ATE) on links are given by

A(d’e) = E[Al](d’e)] = (D(Ig(d,e)),
m(0,1) := E[A;;(0,0)] = A(0,0),
H(d,e) = E[A;j(d,e) — A;j(0,0)] = @(lg(d,e)) - D(61).

Let A = (A(1,1),A(1,0),A(0,1),A(0,0))" be a vector of potential means. The coefficient of
dyadic regression for the observed link A;; = A;;(D;,D;) on W;; = (1,D;,D;,D;D) is then
given by { = MA, where

0 0 0 1

0O 1 0 -1
M =

0O 0 1 -1

I -1 -1 1

The outcome if individual i is generated as: Y; = Bo + B1D; + BrQ; + BuR; + &;, where
0;= Zj# AijD;, R, = Zj# Aij(1-Dj), ei=¢;+ Zj# u;j, and e; is the standard normal error

term. The individual error term &; is independent of treatment, but it is correlated with the
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network. As a result, the coefficient of linear-in-means regression (i.e., regression of ¥; on
(1,D;,Q;,R;)) does not recover the parameter B since E[g;|A,D] # 0. I assess the bias of
this model assuming exogenous network in Table 3. The generated data consists of a dyadic

level data {A;j¢} (i, j):iz,¢» and individual level data {(D;g,Yig)}iq-

Design 2: Quasi-Experiment with Parallel Trend

Let h,(d,e) be a symmetric index function for r € {0,1}. The potential link for a pair
(i,j) at given treatment statuses (D;,D ;) = (d,e) is generated by a binary response A;;o =
1{ho(D;,D;) > ujjo} at t =0, and A;;; = 1{lg(d,e) + h1(D;,D;) > u;;1} at t = 1, where
u;j; are standard normal error terms. Thus, the potential links are not independent of the
treatment by construction. The conditional means at t = 0 is given by E[A;;o(d,e)|D; =
d',D; =e'] = ®(ho(d’,e’)), and hence Assumption 6-(ii) holds. And those at t = 0 is
E[Ajj1(d,e)|D;=d',Dj=e"] = ®(lg(d,e) + hi(d’,e’)). Therefore, the mean and the av-

erage treatment effect on treated (ATT) on links are given by:

m(0,1) = ®(Ig(0,0) + A1 (0, 1)),
H(d,e) = ®(Ig(d,e) + hy(d,e)) —D(I(0,0) + 1y (d, e)).

Suppose hi(d,e) = ho(d,e) —19(0,0) = ho(d, e) — ;. Then, Assumption 7-(ii) is satisfied

by construction since:!°

E[AA;;(0,0)|D;=d,D; =e] = ®(I9(0,0) + hi(d,e)) —DP(ho(d,e)) = 0.

Specifically, I set ho(d,e) = I,(d,e) with a coefficient w. The coefficient of dyadic regres-
sions of observed link A;;;, and first-difference link AA;; on W;; is given by {, = Mm,, t €
{0,1} and & = ¢, — ¢y, where A, = (A;(1,1),A,(1,0),A,(0,1),A,(0,0)), and A,(d,e) =
E[Aij;|D;i=d,D; = e].

Att =1, the outcome is generated by the same way as in the Design 1, and at 7 = 0, the out-
come is generated by Yio = @ + By Sio + €i0, Where Sio = 2. ;; Aijo is the number of neighbors

in the pre-treatment period, g;0 = e;o + . j#iUijo, and e;o ~ N (0,1). Since the individual error

19This design impose more than parallel trend, since there is no trend. If the trend is given by E[A; 71(0,0) -
A;jo(0,0)|D; =d’',Dj=e’] =T, then one can define hi(d’,e’) as hi(d’,e’) := O NT+D(h(d,e")))—6;.
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term contains dyadic error terms related to potential links, Q;1, R;1, Sio are endogenous regres-
sors. The generated data consists of a dyadic-level data {(Dg,D jq,A;ijog, Aij1g)}(ij):iz).g>
and individual-level data {(D;g,Yiog,Yi1¢)}i,e- Table 1 shows the true parameter values and

corresponding true values of decomposition.

Table 1: True Parameter Values

Design 1 Design 2

Outcome coefficients B£=1(2,1,0.8,0.6) B1=1(2,1,0.8,0.6)
Bo=(-1,0,0.6,0.6)

Link Formation 6=(-1,0.1,0.1,1) 6=(-1,0.1,0.1,1)
w=1(-1.5,0.3,0.3,-1)

Distribution of Links £=(2,1,0.8,0.6) ¢, = (0.067,0.069,0.069,0.037)
o = (0.067,0.048,0.048, -0.135)
£=1(0,0.021,0.021,0.172)

Decomposition = (1,0.290,0.032,0.020) 7 =(1,0.235,0.013,0.016)

The estimators proposed in Section 3 are computed with clustered standard errors. The
coverage rate is calculated as the proportion of cases in which the true value is included in the
95% confidence interval across all simulations. The mean squared error (MSE) is calculated

as the average squared deviation between the estimate and its true value over all simulations.

Table 2 presents the results for the decomposition (;r). In the first panel, the average
estimates are closely aligned with the true values, even with a relatively small group size in
both designs. The second and third panels show that the MSE decreases at a rate of G~!, and
the coverage rate of the confidence intervals, based on clustered errors, is near the nominal
95% level. This supports the validity of the proposed asymptotic theory and confirms that the
clustered standard errors perform well. For the outcome coefficient B, see Table B.2, and for
the dyadic coefficients {, ., €, see Table B.1 in Appendix B.

As discussed in Section 2, if the network is exogenously given, the outcome coefficient
can be consistently estimated using an outcome regression based on the observed network.
However, because the data-generating process introduces a correlation between links and the

outcome, assuming an exogenous network leads to bias. Table 3 compares the outcome co-
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Table 2: Simulation Result of Decomposition

Design 1 Design 2
G DT 2PN 2T 2N oy 2PN 2T 2N
Median
50 1.0011 0.2597 0.0312 0.0197 1.0052 0.1794 0.0136 0.0148

100 1.0026 0.2725 0.032 0.0199 1.0045 0.2116 0.0129 0.0156
200 0.9998 0.2814 0.0311 0.0202 0.9969 0.2214 0.0132 0.016
400 0.9995 0.2851 0.0319 0.0203 1.0058 0.226 0.0136 0.0163
800 1.0033 0.2862 0.032 0.0203 0.9992 0.2324 0.0132 0.0164

TRUE 1 0.2896 0.0317 0.0203 1 0.2348 0.0134 0.0165
MSE
50 0.6166 0.0903 0.0027 0.0001 1.6011 0.2159 0.002 0.0002

100 0.3012 0.0413 0.0014 0.0001 0.7761 0.0908 0.001 0.0001
200 0.1463 0.0192 0.0007  <0.0001 0.384 0.0406 0.0005  <0.0001
400 0.073 0.0092 0.0003  <0.0001  0.1869 0.0187 0.0002  <0.0001
800 0.0358 0.0046 0.0002  <0.0001  0.0897 0.0089 0.0001  <0.0001

Coverage Rate
50 0.9363 0.9042 0.9311 0.932 0.9436 0.9335 0.9342 0.8982
100 0.9394 0.9154 0.9365 0.9391 0.9429 0.9243 0.9342 0.9209
200 0.9433 0.9334 0.9443 0.9433 0.943 0.9346 0.9429 0.9304
400 0.9428 0.9383 0.9469 0.9415 0.9443 0.941 0.9465 0.9381
800 0.9492 0.9437 0.9506 0.9487 0.9506 0.9441 0.9487 0.9441

Notes: This table presents the simulation results for B = 10,000 replications. Column G denotes the
number of independent groups, with each group consisting of N = 20 individuals. The first panel
shows the mean across all replications, and the row labeled “TRUE” provides the true values for
each decomposition. The second and third columns display the mean squared error (MSE) and 95%
coverage rates, respectively. (ﬂ'D T DN gIT pIN ) represent the direct treatment, direct network,
indirect treatment, and indirect network effects, respectively.

efficients from the proposed estimation method with those assuming an exogenous network,

as well as estimates that ignore interference.

For each design in Table 3, the second column (Exo.) presents the simulation results of

the coefficient estimates from regressing the outcome on regressors based on the observed
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network (i.e., Q;1, R;1, or R;1 — S;0), which are biased. The third column (Indep.) shows the
simulation results when we ignore all spillover effects, i.e., estimates from regressing the
outcome on the intercept and the individual treatment D; only. These comparisons demon-
strate that ignoring potential endogeneity from the causal impact on the network, as well as

spillover effects, leads to significantly biased estimates.

Table 3: Bias When Assuming Exogenous Network (Design 1)

Design 1 Design 2

G B Exo. Indep. B Exo. Indep.
MAE

50 0.4821 1.7681 2.7246 0.6544 0.9526 0.8959

100 0.3399 1.7658 2.7249 0.4603 0.9406 0.8959

200 0.2377 1.7655 2.7251 0.3242 0.9323 0.8959

400 0.1665 1.765 2.7257 0.2259 0.9267 0.8964

800 0.1181 1.7651 2.7258 0.1581 0.9232 0.8966
MSE

50 1.8748 16.2161 15.2326 3.1601 5.1218 2.2042

100 0.9221 16.1391 15.2213 1.5362 5.0755 2.1751

200 0.4503 16.1128 15.2174 0.7585 5.0521 2.1659

400 0.2229 16.0941 15.2187 0.3688 5.0381 2.1566

800 0.1104 16.0925 15.2189 0.1789 5.0357 2.1551

Notes: This table presents the simulation results based on B = 10,000 replications. Column G rep-
resents the number of independent groups, with each group consisting of N = 20 individuals. The
first panel reports the mean absolute errors across all replications, and the second panel shows mean
squared errors. Columns labeled B present the results from the proposed estimation method. Columns
labeled “Exo.” display the results from regressing ¥; on 1, D;,Q;, R; for design 1, and from regressing
AY;on 1,D;,0;1,R;1 — Sio for design 2. Columns labeled “Indep.” present the results from regressing
Y; on 1, D; for each design.
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S Empirical Hlustration

In this section, I apply the proposed method to data from a randomized experiment conducted
by Comola and Prina (2020). The experiment took place in villages surrounding Pokhara,
Nepal, from 2009 to 2011, and involved providing households with access to savings ac-
counts. The pre-treatment survey was conducted in February 2009, and the treatment was
randomly assigned to half of the households in June 2010 through a public lottery.

As reported by Prina (2015), formal banking services in Nepal are limited, with only
20% of households having a bank account. At the start of the experiment, only 17% of
participants had savings accounts, with most keeping their cash at home. The experiment
aimed to assess the impact of providing a savings account on economic behaviors such as
consumption. Specifically, the treatment offered households the option to open a savings
account. The main effects estimated in Comola and Prina (2021) are intent-to-treat (ITT)
effects. However, as reported by Prina (2015), the take-up rate was quite high, with 84% of

treated households opening an account, and 80% of those actively using it.

The sample consists of 915 households across 19 villages, with detailed information on
financial networks. The network is constructed as undirected, where A;; = 1 if at least one
household i reported having repeated financial exchanges with household j. The network is

block-diagonal, as interactions occur within villages, resulting in a total of 56,308 dyads.

The outcome variable of interest in Comola and Prina (2021) is household meat con-
sumption, which is considered a luxury good in these areas and serves as a proxy for wealth
or conspicuous consumption. Given the potential influence of peer consumption, it is rea-
sonable to expect social interactions to affect meat consumption. Indeed, the study found
positive direct and indirect effects of savings account access on meat consumption. Table 4

shows the distribution of meat consumption at the post-treatment period.

Comola and Prina (2021) estimate a two-period version of the linear-in-means model
using an IV estimation strategy similar to that of Bramoullé, Djebbari, and Fortin (2009).
They calculate the direct and indirect effects as the derivatives of the reduced-form outcome
equation, which is derived from the linear-in-means structure. These derivatives account for
changes in links in response to the treatment, corresponding to the average treatment effects
on row-normalized links. The authors estimate this effect by regressing first-differenced row-

normalized links on indicator of some treated, i.e., max{D;,D}.
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Table 4: Distribution of outcome across villages

village N Mean Std.Dev Min Med Max
Bindabasini 36 1078.3 1064.8 0 1000 4000
Chorepatan 60 1708.2 2494.5 0 940 10800
Chorsangu 82 1034.7 1382.6 0 520 6800
GONESA 12 1070 983.6 0 780 3400
Hanuman Tole 74 9134 1144.3 0 910 8000
Hemja 61 888.5 1168.3 0 520 4500
Kotre 64 1125.6 1403.1 0 560 7120
Kranti tole 119 917 1037.4 0 920 4160
Lower Goste 28 540 722.4 0 0 2000
Mabhat Gaunda 47 988.5 1249.2 0 960 5000
Miyapatan 25 1100 938.2 0 1040 3360
Nagintole 48 9133 1160.6 0 480 5000
Paropakar 51 1203.5 1060.9 0 1040 4080
Pragati Tole 26 1213.8 1591.6 0 920 7000
Rato Pahira 26 1455.4 1993.4 0 960 9200
Sarankot 74 1120 1352.6 0 920 5000
Tutunga 38 901.1 905.8 0 560 3920
Upper Goste 11 1118.2 1139.1 0 1200 3000
Yamdi 33 984.2 1112.8 0 520 4400
Total 915 1057.4 1345.2 0 700 10800

Notes: This table presents the descriptive statistics of the outcome at post-treatment period over 19
villages.

Estimating average treatment effect on link is similar to the method proposed in this
paper. Table 5 presents the first-step regression results. The first column replicates the dyadic
regression from Comola and Prina (2021), where the coefficient for the dyadic treatment is
estimated to be 0.002, indicating that the average increase in row-normalized link is 0.002
percentage points in response to the treatment. The second column shows the results from a
dyadic regression of row-normalized links on the dyadic regressors W;; = (1,D;,D;,D;D ),

again showing an average causal effect on row-normalized links of approximately 0.002. The
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Table 5: Average Treatment Effects on Treated of Links

Var AAS AA? AA
Constant -0.0009 -0.0009 -0.0031
(0.0012) (0.0012) (0.0024)
Some Treated 0.0021
(0.0016)
D; 0.0021 0.0039*
(0.002) (0.0023)
D; 0.0023 0.0039"
(0.0018) (0.0023)
D;xDj -0.0025 -0.0034
(0.003) (0.0034)
Observations 56,308

Notes: The dependent variable in the third column is A; ;| — A;jo, while in the first two columns, it

is Afjl - Afjo, where A} = Aiji/ 2. j#i Aijr represents the row-normalized links. Standard errors are
reported in parentheses. *,**,*** denote the significance levels at 10%, 5%, and 1%, respectively.

interpretation becomes clearer in the third column, which reports estimates from the same
dyadic regression using raw link (non-normalized). Here, the results indicate that when an
individual is treated, the probability of forming a link increases by 0.39%p. This estimate is
statistically significant, suggesting that the treatment has a causal impact on the formation of

network links.

In Comola and Prina (2021), the direct and indirect effects are computed as derivatives
of the reduced-form outcome with respect to the treatment vector, i.e., dE[y|D]/dDy. Di-
rect effects represent the average partial effect of one’s own treatment, while indirect effects
capture the average partial effect of others’ treatments. The authors estimate the direct effect
at 342.3 and the indirect effect at 260.9. However, causal interpretation of these estimate is
not straightforward without further assumptions. In particular, it is valid only when potential
outcome is additively separable with respect to others’ treatment statuses. Additionally, both
direct and indirect effects are mixed effects of treatment and network, which are difficult to

disentangle in their method.

Table 6 presents the direct and indirect treatment and network effects as proposed in this
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paper. Village fixed effects are included to account for variations in the outcome distribution
across villages as shown in Table 4. The dependent variable in the first two columns (M1,
M?2) is Y;, while in the last two columns (M3, M4), it is log(Y;). Model (M2) additionally
controls for a dummy variable 1{Y; = 0}, to account for individuals who do not consume
meat. In model (M3), the dependent variable is set to zero for individuals with ¥; = 0, while
also controlling for the dummy variable 1 {¥; = 0}. In model (M4), observations with Y} =0
are dropped entirely. For models (M3) and (M4), the coefficients are adjusted by multiplying
them by the mean of Y} (1,057.43) to enable comparison with the first two columns.

Table 6: Decomposition of Treatment Effects

M1 M2 M3 M3

Direct Indirect Direct Indirect Direct Indirect Direct Indirect

Treatment 240.7* 185 207.4* 2154 211.8"*  1384* 2752 195.6*
(115.8) (38.3) (99.3) (44.8) (54.7) (28.9) (52.3) (41.2)

Network ~ -169.9 1.6 -202.4 1.6 -135 0.8 -188.7 1.2
(385.7) (3.6) (459.9) 3.7) (306.8) (1.8) (428.8) (2.8)
Total 70.9 186.6™** 4.9 217.1% 76.8 139.2* 86.5 196.8***
(380.1) (36.4) (445) (43) (292.7) (28.1) (415.1) (39.9)
Obs. 915 915 915 612
R? 0.40 0.58 0.98 0.99

Notes: The dependent variable in the first two columns (M1, M2) is Y;. In model (M2) a dummy
variable 1 {Y; =0} is used to control individuals who do not consume meat. In model (M3) the
dependent variable is log(Y;) for ¥} > 0, set to zero for ¥, = 0, and controls a dummy variable
1{Y; = 0}. In model (M4) the dependent variable is log(Y;) and drop the observations with ¥; = 0.
The coefficients in columns (M3) and (M4) are adjusted by multiplying by the mean of Y; (1,057.43)
to allow for comparison with the first two columns. Village fixed effects are included to account for
variations in meat consumption across different villages. The standard errors are computed based on
plug-in asymptotic variance, and are reported in parentheses. *,**,*** denote the significance levels
at 10%, 5%, and 1%, respectively.

I find positive total direct and indirect effects. The direct treatment effects are signifi-
cantly estimated, while the direct network effects are not significant. Furthermore, the direct
network effects are negative, resulting in an insignificant total direct effect. In contrast, the
indirect network effects are relatively small, but both the indirect treatment effect and the

total indirect effect are significantly positive.

35



Although the direct network effects are not significant, their direction is opposite to that
of the direct treatment effects. This suggests there may be an opposing effect arising from
changes in the network structure. Specifically, opening a savings account appears to directly
increase consumption, but it may also reduce consumption by altering the network. As shown
in Table 6, since the treatment increases the probability of forming new links, this could be

interpreted as a spillover effect, with savings behavior spreading through the network.

Overall, the results in this section demonstrate that the method proposed in this paper can
effectively decompose causal effects into pure treatment effects and those driven by causal
changes in the network. This approach is particularly useful when the treatment and network

influence the outcome in opposite directions, as seen in the direct effects presented in Table 6.

6 Conclusion

This paper presents a method for identifying and estimating the causal effects of programs,
accounting for potential causal network changes induced by treatment. The approach de-
composes the treatment effect into two components: the impact when the network remains
unchanged and the impact when only the network structure is altered. The effectiveness of
the method is demonstrated through a Monte Carlo study and illustrated using data from a
study in Nepal by Comola and Prina (2020). This novel approach not only offers a new
method to estimate causal effects considering causal network changes, but also provides a
decomposition that enhances our understanding of the mechanisms driving the program’s

impact.

While linear models for outcome responses are commonly used in practice, exploring
more flexible functional forms could be a valuable direction for future research to reduce
the risk of model misspecification. For example, instead of assuming a linear relationship
with exposures (own treatment, number of treated, and untreated neighbors), a series approx-
imation could be employed. Additionally, this study assumes the availability of full network
information, which is often unavailable. Future work would relax this requirement by observ-
ing only exposure values instead of full network under a different set of assumptions. Similar
decomposition could be possible by identifying the distribution of potential exposure, instead
of that of potential links. This approach could be particularly useful in cases where collecting

full network data is costly.
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Appendix

A Proofs

A.1 Proofs of Propositions in Section 2.4

Proof of Proposition 1. Recall that Q; = 3 ,; A;;D; and R; = 3;,; A;j(1—Dj). Assump-
tion 1 implies:
E[QilD] = Y E[Aij|Di,D;1D; = > (W,0)D; =: 0i(£),
i i

E[Ri|D] = > E[A;ID;,DJ(1-D)) = > (W;;{)(1-D) = Ri({).

J# J#I

(A.1)

By taking conditional expectation on the observed outcome (3), we have

E[Y:|D] =p1+B2Di +B3E[Q:|D] + B4E[R;|D] + E|&;|D]
=B1+B2Di+B30i(§) + BaRi({) + E[&|D]
=Zi({)'B,
because E[&;[D;] = E[£;(0)|D; =0] + D;(E[e:(1)|D; = 1] - E[&:(0)|D; = 0]) = E[&:(0)] +
D;E[g;(1)—¢&;(0)] =0 by Assumptions 2, and 5. Therefore, (i) and (ii) follow by the standard

identification result of least squares estimator of projection coefficients. Next, by Assump-

tion 5 again, we have
H(d,e) :=E[A;j(d,e) - A;;(0,0)|D; =d,Dj = e]
= E[Al]|Dl = d,D] = e] —E[A,](0,0)lDl = O,D] = 0]
= E[A[j|D,‘ = d,Dj = e] _E[Ailei = O,Dj = 0] = A(d,e)—A(0,0)
Therefore, (> = A(1,0) — A(0,0) = H(1,0), and {3 = A(0,1) — A(0,0) = H(0,1). Moreover,

{1 = E[A;;(0,0)] = E[A;;(0,0)|D; =0,D; = 1] =m(0,1). As a result, the decomposition
defined in Section 2 can be recovered by using ¢ and . O

Proof of Proposition 2. Recall that Q;| = ZJ-#Ailej, R; = Zj#Aijl(l —-Dj), and S;o =
Zj# Ajjo. Then, similar to (A.1), we have E[Q;1|D] = Q;1({), E[R;1|D] = R;1({), and E[S;o|D] =
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Sio(£). Next, from Assumptions 2, 6, and 7 the first-differenced observed outcome is given
by AY; = (B1 —a1) + BaD; + B30:1 + B4(Ri1 — Sio) + Ag;. Taking conditional expectation on

AY;, we have

E[AY;|D] = (B1—a1) +p2D; + B3E[Qi1|D] + B4sE[R;1 — Sio|D] + E[Ag;|D]
= (B1—a1) +B2D; +B30i1({) + Ba(Ri1(§) = Sio({)) + E[A&;| D]
=X;({)'B.

Note that E[Ag;(0)|D; =1] = E[Ag;(0)|D; = 0] by Assumption 7, and it implies E [&;1(0)|D; =
1] = E[&i0(0)|D; = 1]+ E[Ag;|D; =0]. Here, the first term is E[g;0(0)|D; = 1] = E[&0|D; =
1] by Assumption 6, and therefore E[g;1(1) —&;1(0)|D; = 1] = E[&;1|D; = 1] — E[&|D; =
1] - E[Ag;|D; = 0]. It follows that

E[Agi|D;] = E[A&;(0)|D; =0] + D; [E[Ag;|D; = 1] - E[Ag;|D; = 0]]
= E[A&;(0)] +D;E[g;i1(1) —€i0(0)|D; = 1] =0,

by construction of the individual error term in Assumption 2. Therefore, (i) and (iii) follow
by the standard identification result of least squares estimator of projection coefficients. Next,

note that

H(d,e)

:=E[A;j1(d,e)—A;j1(0,0)|D; =d,D; = e]

E[Aij1|D;=d, D =e]—E[A;;0(0,0)|D; =d,D; = e] - E[AA;;(0,0)|D; =d,D; = e]
=E[A;j1|D; =d,D; =e]—E[A;jo(d,e)|D; =d,D; = e] - E[AA;;(0,0)|D; = 0,D; = 0]
E[AA;j|D;=d,D; =e]—E[AA;;|D; =0,D; =0] = AA(d,e) - AA(0,0),

where A,(d,e) = E[A;j|D; = d,D; = e]. The third equation is by Assumption 6-(ii) and
Assumption 7-(ii). Therefore, because (> = A,(1,0) — A,(0,0), we have & = H(1,0) and
& = H(0,1). Moreover,

m(0,1) : = E[A;;1(0,0)|D; =0,D; =1]
=E[Aij1(0,D)|D; =0,D; =1]1-H(0,1) = {31+ {11 = &3 = {30+ (i1

As a result, the decomposition in Section 2 can be recovered by using { = ({,,¢,) and B. O
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A.2 Proofs of Propositions in Section 3

The following lemma is a version of Lemma 4.3 in Newey and McFadden (1994), and is used

to prove Propositions 3, and 4.

Lemma 1. Let V, be a random vector whose supportis V and € : V X D — RM be a vector
of real valued functions that is integrable with respect to the distribution of V, at each point
¢ € ® c RX. Define followings:

G
L@ =5 D (Ved), L9)=E[(Vy.0)]
g=1

Suppose (a) {V,} is independently and identically distributed; (b) é L, o0, do; (c) L(v,d) is
continuous at ¢ for all v € V; (d) For some neighborhood N of ¢o, we have E [sup 4.y, [|((V . 9)|] <
co. Then, L() is continuous at ¢o and L () N L(¢o).

Proof. Consider a sequence {¢,} — ¢o. For the neighborhood N of ¢ satisfying (d), we
have [[£(v,@n)ll < supgen [1€(v,@)I| =: g(v), for all but finite number of n, where g(v) is
integrable by (d). Thus, by dominated convergence theorem, we have {E[((Vg,¢,)]} —
E[€(Vg4,¢0)], which implies continuity of L(¢) at ¢g. See proof of Lemma 4.3 in Newey
and McFadden (1994) for Lg () AN L(¢o). O

Proof of Proposition 3.

A. Consistency, and influence function of

Note that ||Wije||* = 1+ Dig + D jg + DigD g <4, and W, £| = {1+ Digla+ D jgls+ DigD o lal <
|1+ O+ G+ 4] =A(1,1) € [0, 1], because

A(0,0)
‘= A(1,0)—A(0,0)
- A(0,1) = A(0,0) ’

A(1,1)=A(1,0) = A(0,1) + A(0,0)

where A(d,e) = E[A;j|D; =d,Dj = e]. Let w;j, = Ajjg —W;jg{*. Then, Elwijg|Dg] =

ElwijelWijgl =0, and E[w?,] = E | (Aijg = Wi;,0%| < E|(14is] + Wy, 12| < 4. Therefore,

1
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by standard asymptotic theory for least squares estimator, we have

) |

1 1 s

G2 |Fm, 2 WisWiss| = B [WiseWise| = Bw.
8

(i,7):i#j

=1
1< 1 ,
EZ NN-1) Z Wijewijg| — E[Wijewije] =0,
g=1] (i,7):i#j
«/L_i N(Nl—l) Z Wijewise |~ N (0.Z¢),
=i (i,)):i#] |

as G — oo, where X; := Var(m 2 )it W,-jgwl-jg). The second probability limit is from
the moment condition E[A;j; — W}, {*ID¢] = 0. And the variance X, of last limiting distribu-

tion exists because

1 1
=E [||Wijg||4] i E [(Ai]g :Jg *)4] i

E IHWijg(Aijg ijg
1 1
<E [||Wijg||4] 2 (SE [14:jl"] +8E [||W,-jg||4] ”5*”4)2

1

<4(s+128)¢*])’

by Cauchy-Schwarz inequality and pytagorian rule. Thus, ¢ N Z*, and

VG(&-¢*) = \/_Zw;((vg,g )+0,(1) -5 N(0, By £.Byy), (A2)

where V, denote group-level data, and y;(V,,{) = By, N(Al, oy Z Wije(Aijg=Wi,0).

(i,7):i#]
B. Consistency, and influence function of 3

Proposition 1 implies the moment condition E [A(V,,{*, )] =0, where h(V,,{,B) =Zig({) (Yig—
Zig(£)'B) €R*. Suppose (£, B) 5 (¢*, B*). Recall that [W;;.¢I< 1. Thus, max{Q;g({), Rig({)} <
2 j#i(Wi;ed) SNg(Ng—1). Therefore,

[ Zig(Q)|]F = 1+ Dig +(Qig () + (Rig(£))? < 24+ 2(Ng (Ng —1))? =: By < w0,
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AISO, V§Zig(§) = (0,0, Zj:ﬁi Wingjgst;ti Wijg(l —D]'g))’. ThUS,

IV:Zig ()] = r (Z WijeDjg > WisDjg+ > Wijg(1=Djg) D Wi (1- ng))

ijg
J#i J#i J#i

J#i
= > Wi Dije > WijeDjg+ > Wi (1=Djg) > Wije(1-Djg)
J#i J#i J# J#i
2 2 2 2
<2 Zng +2 ZDingg +{Z(1—ng)} +{ZDig(1—ng)}
J#i J# J#i J#

<6(Ng—1)* = B < 0. (A.3)

The above boundedness imply boundedness of derivative of the moment functions:
IVsh( Ve £.B)|| = |26 () Zig ()| = |1 Zi (O < B,
IVeh(Ve. 8. B)|| = 1l + 1Al < B,

where

i)l = ||Ve Zig (§) (Yig = Zig ($)' B)||

<||VeZig (O)|| (1Yigl + || Zig (O] 1B]) < B2 (mgl +VB; II,BII),
Ihall :=|Zig ($) Ve (Zig () B)||

=||1Zig (OINIBIVs(Zig ()] < (B1B2)Z 18I,

by Cauchy-Schwarz inequality for Frobenius inner product, and the definition of Frobenius

norm and L, norm. Also, since Vgh(V,,{,B) and V h(V,,{,B) are continuous on ¢, 8, we
can apply Lemma 1 to conclude

Ql

G
LN Ve 2 B) o EL(Ver £ )] =0
g=1

Ql -
DM

Vph(Ve, & B) — E [Vph(Ve, £*.B*)| = —E |Zig(£*) Zig(£*)'] =: —B2

(A4)
1

oQ
1l

Ql—
gl

Veh(Ve. 2. B) = E [Veh(Ve, £ B)] = —ElZig (Ve (Zig (£*) B)] = =Cy,
=1

oQ

because E [Veh(Ve.£*.B%)| = E [V Zig(£*) Yig = Zig(§) B*)] - E [ 21 (§*)Ve(Zig (£*) )]
and the second term is zero by the moment condition E [Y; — Z;s({*)' B*|D] = 0.
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In the second-step estimation, B solves the following first-order condition:

1< -
= Ezh((vg’{aﬁ)a (AS)
g=1

First two convergences in (A.4) imply
-1

B=p"+

1S, .
5 Zzig(g)zig(g)/
g=1

1S, ,
G 2 Zis( Q) Wig = Zig (2 BY)
g=1
= B* =B E[h(Ve, £, B*)] +0, (1) > B,
Next, by applying mean value theorem on (A.5) and by (A.2) and (A.4), we have

1 & . 1 & o . 1 8 o .
=—Zh(fvg,4 B >+5;vﬂh((vg,§,ﬁ>@<ﬁ—ﬂ )+52v4h<fvg,§,ﬂ)@§—§ )

v_Zh«v {*.B*) - BzNG(B-B*) - Cg\/—Zl/’g((V £ +o,(1). (A.6)

By rearranging (A.6), we have

VG(B-p*) = — Zwﬁw & B +0,(1),
VG &

where Yg(Ve. ¢, B) := B, [W(Ve. £, B) — Cewr (V. £)]. Note that
E|InVes* B | = E 1226 (6*)Yig = Zi (¢ B4
= E |||z (e (e~ Zig(*) B
< ||z @] (3£ +sE L @18 T) <

provided that E[Y;'] < o, and we showed E [Ha//g((vg,{*)ﬂz] < oo in Part A. Thus, by the
Cauchy-Schwarz inequality and the Pythagorean theorem,

£ (Ip (Ve £ 8P| <1821 [ E [0V 89N lCel E | lwe (Ve ) P] | < .

As a result, the asymptotic variance of VG (B - *) is the variance of yg(V,,{*, B*).
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C. Consistency, and influence function of #
By applying the Delta-method, we have

VG (& —n*) v_anvvg,g B0, (1) =5 N (0E [0 (Ve £ B W (Ve . B ).

where ¥ (V,, ¢, B) is defined by

¥p,2(Ve, 4. B)
(N =Dpa(Ve, 8. B + B0 2(Ve, &)
(W3 (Ves 8. B) —ipa(Vis £ B)) &F + (B = By W1 (Ve §) |
Up3 (Ve & BV + B3 3(Ve, &)

where ¥, 1 (-) denote k-th element in vector ¢ (-) for b € {{, B, x}.

Recall that E [||¢/§((Vg,§*)||2] ,and E [Hwﬁ((vg,g*,ﬂ*)uz] are bounded, and therefore
E[|vs(Ve. £*)Wp(Ve.£*. B*)||] is also bounded. It follows that E [||zp,r((\/g,§*,ﬂ*)||2] < co.

D. Consistency of plug-in standard errors
From Parts A and B, we have E [supg e (Ve {)||2] <oo,and E [sup({,ﬁ) s (Ve, {,,8)”2] < 0.
Therefore, by the Cauchy-Schwarz inequality,

1
2

<E

£ | sup e Ve sVt B | £| sup ||wﬁ<vg,;,ﬂ>||2] oo
£.B) &.B)

Sgpl}wc(‘*’g@llz

This implies E [sup(g’ﬁ) ||z,l/,,((Vg,§,B)||2] < 00, since ||y (Ve. £, B)¥x| is computed by elements
g (Vy, ), and yg(Vy, Ve, ¢, B). Therefore, by consistency of (Z,B.#), and applying Lemma 1,
we have

G
Z U (Ve DU (Ve 8) = E W (Ve, £ (Ve 0]

Ql =

Up( Ve & BWE( Ve 8. B) 5 E[p(Veo & BWp(Ve, £, B*)']

Ql~—
MQ [N

oQ
Il

Ql—
MQ

Un (Ve LBV (Vs & B) 25 E [ (Ve 0 B Wi (Ve £, B*)' .

o
1l
—_

As a result, the continuous mapping theorem states the desired results. O
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Proof or Proposition 4. By applying the same argument of Part A in the proof of Proposi-
tion 3 to ¢,,¢,, and by the fact that £ = £, - £,, we have & N &*, and

1

V(&=L
GE—¢=

G
D e (Ve £) 40, (1) =5 N(0. By Ze By,
8=l (A7)

G
N 1 A Ay _ _
Vo =5 D we(Ve &) (V&) = By 2By,
g=1

where Zg = Var (m Z(i’j);i¢j Wijg(AAijg - W:Jgf))
The moment function for B in this case is given by £(V,,, B) = Xig () (AYig — Xig (£)'B).
Recall that max{Q;:¢({), Ritg({),Sitg({)} < X jsi Aijtg(g) < Ng(Ng —1). Therefore,

[Xig (O = 1+ Dig + (Qirg () + (Ri1g (£) = Sing (£))?
<2+5(Ng(Ng—1))? =: By < 0.

Also, Vi Xig(£) = (0,0,% 4, WijgDjg, 3 2 Wijg (1= Djg))’. Thus, by the same argument in
(A3), V2, Xig (0)|]* < 6(Ng —1)2 = By < 00. Next, Vg, Xi(£) = (0,0,0, % 1; Wij)'. Thus,

”Vs“oXig({)”z < Z Wije ZWijg

J#i J#i
2 Die

J#

2

=1+N;Djg + + <4(Ng—1)*=Bs < 0.

ZDingg

J#

The above boundedness imply boundedness of derivative of the moment functions:

IVsL(Ver & B = | Xie (O Xig ()] = | Xie Q)| < o0,
V2,6V, &, B)|| = 16111 + 1162 ]| < oo,

where
161011 = [V, Xig () (AYig = Xio (5)' B
< |V, Xig ()| (1AYzg | +[| Xig ) 1BI) < B (1AYig| + VB2 18] < oo,
1621l = [|X i (£) Ve, (Xig (£)'B)|
= | X (O 1B1[V¢, (Xig ()] < oo,

for ¢ € {0, 1}, By the Cauchy-Schwarz inequality for the Frobenius inner product, and the def-
initions of the Frobenius norm and the L, norm. Also, since Vgl(V,,¢,B) and V¢, ((V,, 4, B)
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are continuous on ¢, B, we can apply Lemma 1 to conclude

G
LN UV B) D LVt 8] =
g=1

Ql

Vpl (Ve L. B) = E [VaU(Ve, £, B%)] = —E [Xig () Xig (£*)'] =

Ql=
e

1

Q%

1

7 2 Ve Vel B) = E [V (Ve 0" )| = ~E[Xig (L) Ve, (Xig (%) BN = =Cy,.
g=1

Therefore, by the same argument in Part B of proof of Proposition 3, we have 8 L, g*, and
A 1 < d
VG(B-B*) = — Zwﬁwg,g*,ﬁ*) +0,(1) = N (0,Vp)

Zwﬁm/ EBWE( Ve L. B) = Vg,

g 1

where yg(V,. 4. B) == By' [€(Ve.{.B) = C 0g, (Ve §) = Ctb, (Ve £) |, and
Vg =E [p(Ve, £* B s (Ve.£*, B*)']. Lastly, by applying the Delta-method, we have

| &
VG (7 - n*) = —Zwﬂ«vg,;*,ﬁ*)wp(l) <5 N(0.Ve).
< 5 » s oa, P
A Z Voo & Bl (Ve 8B =V,
g=1
where Vx = E [y (Ve % B )Wr (Ve £, B*)'|, and Yz (V. £, B) is defined by

‘/’ﬂ,Z((Vg’g’ﬁ)
(N =Dpa(Vy, &, B)E +Bive (V. €)
(Wp.3(Ve. £ B) —pa(Ve. . B)) ({3 + L) + (B = BY) (g0 3(Veu O) + g, 1 (Ve ) |
Up3 (Ve & BYES +Bitre 3(Ve, 6)

where ¢ 1 () denote k-th element in vector v () for b € {¢, B,x}. Lastly, V; ., V¢, Vg, Vy are
sample variance matrices of ¥y, (Ve,&,), Ve(Ve. &), Wp(Ve. L. B), Wn(Ve. <. B). respectively,

and V~1/2 denote a square root matrix of V!,
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B Tables

This table shows the simulation results for the first-step estimation of dyadic regression for

Designs 1 and 2, as defined in Section 4.

Table B.1: Simulation Result of Dyadic Coefficients

Design 1 Design 2, ¢, Design 2, &
G 4] 763 1€ 4 74| 143 1< 4 £ & & &4
Median
50 0.1587 0.0254 0.0254 0.3694 0.0667 0.0689 0.0689 0.037 0 0.0205 0.0205 0.1718
100 0.1587 0.0254 0.0254 0.3698 0.0668 0.069 0.069 0.0373 0 0.0208 0.0208 0.1719
200 0.1587 0.0254 0.0254 0.3698 0.0668 0.0689 0.0689 0.0373 0 0.0206 0.0206 0.1719
400 0.1586 0.0254 0.0254 0.3697 0.0668 0.0688 0.0688 0.0375 0 0.0206 0.0206 0.172
800 0.1586 0.0254 0.0254 0.3698 0.0668 0.0688 0.0688 0.0375 0 0.0206 0.0206 0.1721
TRUE 0.1587 0.0254 0.0254 0.3698 0.0668 0.0689 0.0689 0.0374 0 0.0206 0.0206 0.1721
MSE
50 0.6 0.9 0.9 3 0.3 0.5 0.5 2 0.5 1 1 32
100 0.3 0.4 0.4 1.4 0.1 0.3 0.3 1 0.3 0.5 0.5 1.7
200 0.1 0.2 0.2 0.7 0.1 0.1 0.1 0.5 0.1 0.2 0.2 0.8
400 0.1 0.1 0.1 0.4 0 0.1 0.1 0.2 0.1 0.1 0.1 0.4
800 0 0.1 0.1 0.2 0 0 0 0.1 0 0.1 0.1 0.2
Coverage Rate
50 0.9412 0.9408 0.9408 0.9367 0.9461 0.9415 0.9415 0.944 0.9448 0.9464 0.9464 0.9467
100 0.9467 0.9473 0.9473 0.9474 0.9458 0.941 0.941 0.9421 0.9468 0.9416 0.9416 0.9459
200 0.9464 0.9472 0.9472 0.9467 0.9446 0.947 0.947 0.9506 0.9474 0.951 0.951 0.9497
400 0.9497 0.9472 0.9472 0.9498 0.9485 0.9491 0.9491 0.9534 0.9493 0.9439 0.9439 0.9513
800 0.9501 0.9489 0.9489 0.9495 0.9527 0.9503 0.9503 0.951 0.9504 0.9505 0.9505 0.949

Notes: This table presents the simulation results for B = 10,000 replications. Column G denotes
the number of independent groups, with each group containing N = 20 individuals. The first panel
shows the median across all replications, and the row labeled “TRUE” presents the true values for
each decomposition. The second and third columns display the 1000xMSE and 95% coverage rates,
respectively.
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This table shows the simulation results for the second-step estimation of outcome regression

for Designs 1 and 2, as defined in Section 4.

Table B.2: Simulation Result of Outcome Coefficients

Design 1 Design 2
G Bo Bi Br Bu ABoy Bi Br Bu
Median
50 1.988 1.0011 0.7996 0.6071 0.9963 1.0052 0.8007 0.6
100 2.0075 1.0026 0.7993 0.5969 0.998 1.0045 0.7974 0.5968
200 1.9923 0.9998 0.8007 0.6065 1.0022 0.9969 0.7986 0.6024
400 2.0022 0.9995 0.7997 0.5984 0.9946 1.0058 0.8007 0.5973
800 2.0012 1.0033 0.8 0.5985 1.0008 0.9992 0.7998 0.6034
TRUE 2 1 0.8 0.6 1 1 0.8 0.6
MSE
50 1.0006 0.6166 0.0303 0.2273 0.5897 1.6011 0.1624 0.8069
100 0.4933 0.3012 0.0148 0.1128 0.2862 0.7761 0.0774 0.3965
200 0.2418 0.1463 0.0073 0.0549 0.1387 0.384 0.0394 0.1964
400 0.1193 0.073 0.0036 0.027 0.0678 0.1869 0.019 0.0951
800 0.0593 0.0358 0.0018 0.0135 0.0338 0.0897 0.009 0.0464
Coverage Rate
50 0.9359 0.9363 0.9345 0.9346 0.9334 0.9436 0.9362 0.9415
100 0.9375 0.9394 0.9402 0.9378 0.9359 0.9429 0.9427 0.9402
200 0.9452 0.9433 0.9451 0.9442 0.9437 0.943 0.9446 0.9417
400 0.9459 0.9428 0.9406 0.9476 0.9462 0.9443 0.9463 0.9437
800 0.9487 0.9492 0.9521 0.95 0.9462 0.9506 0.9517 0.9508

Notes: This table presents the simulation results for B = 10,000 replications. Column G denotes the
number of independent groups, with each group containing N = 20 individuals. The first panel shows
the median across all replications, and the row labeled “TRUE” presents the true values for each
decomposition. The second and third columns display the MSE and 95% coverage rates, respectively.
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This table shows the mean absolute error (MAE) computed by 10,000 replications for all

parameters in Designs 1 and 2.

Table B.3: Overall MAE with Different Group Size

Design 1 Design 2

N G ¢ B n ¢ ¢ B n

5 50 0.038 0.952 0.364 0.029 0.04 3.196 1.202
5 100 0.027 0.477 0.153 0.021 0.028 1.372 0.46

5 200 0.019 0.308 0.095 0.015 0.02 0.544 0.149
5 400 0.013 0.212 0.064 0.01 0.014 0.345 0.089
5 800 0.009 0.147 0.044 0.007 0.01 0.241 0.061
5 1600 0.007 0.105 0.031 0.005 0.007 0.168 0.042
10 50 0.018 0.508 0.206 0.014 0.018 0.818 0.346
10 100 0.013 0.345 0.137 0.01 0.013 0.523 0.207
10 200 0.009 0.243 0.095 0.007 0.009 0.355 0.137
10 400 0.006 0.169 0.066 0.005 0.007 0.249 0.095
10 800 0.004 0.12 0.047 0.003 0.005 0.175 0.067
10 1600 0.003 0.084 0.033 0.002 0.003 0.121 0.046
20 50 0.009 0.482 0.223 0.007 0.009 0.654 0.341
20 100 0.006 0.34 0.157 0.005 0.006 0.46 0.238
20 200 0.004 0.238 0.109 0.003 0.004 0.324 0.167
20 400 0.003 0.167 0.077 0.002 0.003 0.226 0.116
20 800 0.002 0.118 0.054 0.002 0.002 0.158 0.081
20 1600 0.002 0.082 0.037 0.001 0.002 0.113 0.058

Notes: This table presents the simulation results for B = 10,000 replications. Column G denotes the
number of independent groups, and column N denotes the number of individuals in each group. The
table shows the overall mean absolute error (MAE) across all replications, i.e., ﬁ Zle Zi:l |ékb -
or].

k
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This table shows the mean squared error (MSE) computed by 10,000 replications for all

parameters in Designs 1 and 2.

Table B.4: Overall MSE with Different Group Size

Design 1 Design 2
N G ¢ B n ¢ ¢ B n
5 50 9.95 154.646 53.899 6.42 11.14 7235.119  1760.309
5 100 4.94 3.89 1.034 3.13 5.49 1051.371  191.949
5 200 247 0.784 0.112 1.58 2.76 6.278 0.926
5 400 1.23 0.353 0.046 0.79 1.37 1.124 0.108
5 800 0.61 0.167 0.021 0.4 0.68 0.53 0.047
5 1600 0.3 0.084 0.01 0.2 0.35 0.252 0.022
10 50 2.2 1.901 0.604 1.4 24 19.279 11.341
10 100 1.11 0.847 0.244 0.69 1.23 2.109 0.663
10 200 0.55 0.412 0.115 0.36 0.61 0.925 0.271
10 400 0.27 0.2 0.054 0.17 0.3 0.445 0.127
10 800 0.14 0.1 0.027 0.09 0.16 0.219 0.062
10 1600 0.07 0.049 0.013 0.04 0.07 0.107 0.03
20 50 0.53 1.875 0.71 0.33 0.57 3.16 1.819
20 100 0.26 0.922 0.344 0.17 0.29 1.536 0.868
20 200 0.13 0.45 0.166 0.08 0.14 0.759 0.425
20 400 0.06 0.223 0.083 0.04 0.07 0.369 0.206
20 800 0.03 0.11 0.041 0.02 0.04 0.179 0.099
20 1600 0.02 0.053 0.019 0.01 0.02 0.091 0.051

Notes: This table presents the simulation results for B = 10,000 replications. Column G denotes the
number of independent groups, and column N denotes the number of individuals in each group. The
table shows the overall mean squared error (MSE) across all replications, i.e., ﬁ Zle Zizl (brp —
0%)?. For £,£,,€, it displays 1000x MSE.
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